forked from GabrielHoffman/decorate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTODO
63 lines (26 loc) · 1.36 KB
/
TODO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
library(decorate)
library(ggplot2)
data(iris)
# run sle.score on first 2 iris species
# this is not significant
df = data.frame(categ = droplevels(iris[1:100,5]), score = sle.score(iris[1:100,1:4], method="spearman"))
ggplot(df, aes(categ, score)) + geom_boxplot()
with(df[df$categ %in%c ("setosa", "versicolor"),], summary(lm(score~categ)))
# Evaluating all 3 species together changes the SLE metric
# and the 3 species are not significantly different
df = data.frame(categ = droplevels(iris[,5]), score = sle.score(iris[,1:4], method="spearman"))
ggplot(df, aes(categ, score)) + geom_boxplot()
with(df[df$categ %in%c ("setosa", "versicolor"),], summary(lm(score~categ)))
library(decorate)
library(ggplot2)
data(iris)
# run sle.score on first 2 iris species
# this is not significant
df = data.frame(categ = droplevels(iris[1:100,5]), score = delaneau.score(iris[1:100,1:4], method="spearman"))
ggplot(df, aes(categ, score)) + geom_boxplot()
with(df[df$categ %in%c ("setosa", "versicolor"),], summary(lm(score~categ)))
# Evaluating all 3 species together changes the SLE metric
# and the 3 species are not significantly different
df = data.frame(categ = droplevels(iris[,5]), score = delaneau.score(iris[,1:4], method="spearman"))
ggplot(df, aes(categ, score)) + geom_boxplot()
with(df[df$categ %in%c ("setosa", "versicolor"),], summary(lm(score~categ)))