From e736c44afc2b74746b2a4b547cd3f8eb6632538b Mon Sep 17 00:00:00 2001
From: Gabriel Hoffman
colData()
from one cell type.
# get data
df <- extractData(res.proc, "CD14+ Monocytes", genes = "ISG20")
@@ -588,7 +588,7 @@ Comparing expression in clusters
# The coefficient 'compare' is the value logFC between test and baseline:
# compare = cellClustertest - cellClusterbaseline
-df_Bcell <- topTable(fit, coef = "compare")
+df_Bcell <- topTable(fit, coef = "compare")
head(df_Bcell)
## logFC AveExpr t P.Value adj.P.Val
@@ -624,7 +624,7 @@ Gene-cluster specificity
genes <- rownames(df_cts)[apply(df_cts, 2, which.max)]
-plotPercentBars(df_cts, genes = genes)
+plotPercentBars(df_cts, genes = genes)
dreamlet::plotHeatmap(df_cts, genes = genes)
vignettes/errors.Rmd
errors.Rmd
dreamlet()
evaluates precision-weighted linear (mixed)
models on each gene that passes standard filters. The linear mixed model
-used by dream()
can be a little fragile for small sample
+used by dream()
can be a little fragile for small sample
sizes and correlated covariates. dreamlet()
runs
variancePartition::dream()
in the backend for each cell
-cluster. dream()
reports model failures for each cell
+cluster. dream()
reports model failures for each cell
cluster and dreamlet()
reports these failures to the user.
dreamlet()
returns all successful model
fits to be used for downstream analysis.
NEWS.md
+
run_mash()
with multiple coefficients
diff --git a/docs/reference/index.html b/docs/reference/index.html
index 1ff3798..c8f2c74 100644
--- a/docs/reference/index.html
+++ b/docs/reference/index.html
@@ -10,7 +10,7 @@
dreamlet
- 1.1.21
+ 1.1.22