-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
222 lines (178 loc) · 7.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from genericpath import exists
import sys, os
sys.path.append(os.getcwd())
import argparse
# import enum
from collections import OrderedDict
import numpy as np
# import math
# import enum
import os
import numpy as np
import torch
from utils.loader import load_dataset, get_infinite_batches, load_model
from utils.helper_functions import visualize_feature_map
import time
global_timer = time.time()
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='GAN', required=False)
parser.add_argument('--dataset', type=str, default='CelebA', required=False)
parser.add_argument('--n_epochs', type=int, default=2000, required=False)
parser.add_argument('--batch_size', type=int, default=64, required=False)
parser.add_argument('--channels', type=int, default=3, required=False)
parser.add_argument('--n_critic', type=int, default=10, required=False)
parser.add_argument('--client_cnt', type=int, default=5, required=False)
parser.add_argument('--share_D', type=str, default='False', required=False)
parser.add_argument('--load_G', type=str, default='False', required=False)
parser.add_argument('--load_D', type=str, default='False', required=False)
parser.add_argument('--debug', type=str, default='True', required=False)
parser.add_argument('--proportion', type=float, default=0.8, required=False)
parser.add_argument('--random_colors', type=str, default='1_per_group', required=False)
parser.add_argument('--resize_to', type=int, default=32, required=False)
parser.add_argument('--time_now', type=str, default='', required=False)
args = parser.parse_args()
print(args.debug)
n_epochs = args.n_epochs
print("n_epochs", n_epochs)
dataset_name = args.dataset
batch_size = args.batch_size
model = args.model
channels = args.channels
n_critic = args.n_critic
client_cnt = args.client_cnt
share_D = True if args.share_D == 'True' else False
debug = True if args.debug == 'True' else False
load_G = True if args.load_G == 'True' else False
load_D = True if args.load_D == 'True' else False
proportion = args.proportion
random_colors = args.random_colors
resize_to = 32
os.makedirs("runs", exist_ok=True)
root = "runs/" + args.time_now
args_dict = dict(vars(args))
for i, ii in args_dict.items():
print(i, ii)
# root += (i + '_' + str(ii) + '_')
root += ('_' + model +'_' + str(proportion) + '_' + str(share_D) + '_' + dataset_name)
# print(share_D)
os.makedirs(root, exist_ok=True)
cuda = True if torch.cuda.is_available() else False
print("is cuda available:", cuda)
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
print("debug:", debug)
trainloader, img_shape = load_dataset(dataset_name=dataset_name,
random_colors='1_per_group',
client_cnt=client_cnt,
channels=channels,
batch_size=batch_size,
colors = None,
debug=debug,
proportion=proportion,
root='.')
# ====================^^^^^datasets^^^^^=========================
# model selection, load G and D architecture
if model == 'WGAN-GP':
from models.WGAN_GP import Generator, Discriminator, train_1_epoch
print("loaded WGAN-GP model")
elif model == 'GAN':
from models.GAN import Generator, Discriminator, train_1_epoch
print("loaded vanilla GAN model")
class Server():
# for doing model averaging after updating local ones
def __init__(self, client_list:list()):
self.clients = client_list
if model == 'WGAN-GP':
self.generator = Generator(channels)
elif model == 'GAN':
self.generator = Generator(img_shape=img_shape)
# return optimizer here
self.g_iter = 1
if cuda:
self.generator.cuda()
if load_G:
load_model("generator_pretrain.pkl", self.generator)
def average(self):
print("averaging models on %d clients..."%(len(self.clients)))
averaged_dis = OrderedDict()
for it, client in enumerate(self.clients):
dis_params = client.discriminator.state_dict()
coefficient = 1/len(self.clients)
if share_D:
for idx, val in dis_params.items():
if idx not in averaged_dis:
averaged_dis[idx] = 0
averaged_dis[idx] += val * coefficient
print("updating models for all clients")
for idx, client in enumerate(self.clients):
if share_D:
self.clients[idx].discriminator.load_state_dict(dis_params)
if debug:
for idx, client in enumerate(self.clients):
print("Comparing discriminator [{}]".format(idx))
self.compare_models(self.clients[0].discriminator, self.clients[idx].discriminator)
print("done.")
def _train(self, epoch):
for idx, client in enumerate(self.clients):
train_1_epoch(self.generator,
client.discriminator,
cuda=cuda,
n_critic=n_critic,
data=client.data,
batch_size=batch_size,
debug=debug,
n_epochs=n_epochs,
lambda_term=client.lambda_term,
g_iter=self.g_iter,
id=client.id,
root=root)
self.g_iter += 1
def train(self):
for epoch in range(n_epochs):
self._train(epoch)
if share_D:
self.average()
def val(self):
server.clients[0].val()
def compare_models(self, model_1, model_2):
models_differ = 0
for key_item_1, key_item_2 in zip(model_1.state_dict().items(), model_2.state_dict().items()):
if torch.equal(key_item_1[1], key_item_2[1]):
pass
else:
models_differ += 1
if (key_item_1[0] == key_item_2[0]):
print('Mismtach found at', key_item_1[0])
else:
raise Exception
if models_differ == 0 and debug:
print('Models match perfectly! :)')
class Client():
# each client has one generator and discriminator
def __init__(self, cid):
if model == 'WGAN-GP':
self.discriminator = Discriminator(channels)
elif model == 'GAN':
self.discriminator = Discriminator(img_shape=img_shape)
self.batches_done = 0
self.id = cid
self.cuda = cuda
self.batch_size = batch_size
self.lambda_term = 10
self.g_iter = 1
self.data = get_infinite_batches(trainloader[self.id])
if cuda:
self.discriminator.cuda()
if load_D:
load_model("discriminator_pretrain.pkl", self.discriminator)
# init own dataset based on cid
# make N clients
client_list = [Client(x) for x in range(client_cnt)]
# create server
server = Server(client_list)
# start training
server.train()
# server.val()
# visualize_feature_map(server.clients[0].discriminator.model)
# # visualize_feature_map(server.generator.model)
# print("total time taken:", time.time()-global_timer)
# print("done")