-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththesis.lot
25 lines (25 loc) · 3.66 KB
/
thesis.lot
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
\addvspace {10\p@ }
\contentsline {table}{\numberline {1.1}{\ignorespaces Planck 2018 best-fit parameters in the standard, spatially flat, $\Lambda $CDM model\nobreakspace {}\cite {Aghanim:2018eyx}. The tabulated parameters are from top to bottom the baryon density ($\Omega _b h^2$), the CDM density ($\Omega _c h^2$), the angular size of the sound horizon ($100 \theta _\star $), the optical depth due to reionisation ($\tau $), the scalar power spectrum index ($n_s$), and the amplitude of primordial curvature perturbations ($\qopname \relax o{ln}(10^{10} A_s)$).\relax }}{15}{table.caption.13}%
\addvspace {10\p@ }
\addvspace {10\p@ }
\contentsline {table}{\numberline {3.1}{\ignorespaces Stage IV H$\alpha $ spectroscopic survey parameters.\relax }}{57}{table.caption.33}%
\contentsline {table}{\numberline {3.2}{\ignorespaces HI intensity mapping survey specifications. (For *, see Table\nobreakspace {}\ref {tab:skasystemp}.)\relax }}{81}{table.caption.46}%
\contentsline {table}{\numberline {3.3}{\ignorespaces Parameters in\nobreakspace {}\textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {e3.4}\unskip \@@italiccorr )}} (from \cite {Ansari:2018ury}).\relax }}{81}{table.caption.47}%
\contentsline {table}{\numberline {3.4}{\ignorespaces System temperatures for MeerKAT and SKA1-MID, used in Figure\nobreakspace {}\ref {fig2} (from \cite {Fonseca:2019qek}).\relax }}{82}{table.caption.48}%
\contentsline {table}{\numberline {3.5}{\ignorespaces Total SNR for single-dish mode surveys.\relax }}{86}{table.caption.56}%
\contentsline {table}{\numberline {3.6}{\ignorespaces Total SNR for interferometer-mode surveys.\relax }}{87}{table.caption.60}%
\contentsline {table}{\numberline {3.7}{\ignorespaces Total SNR for single-dish mode surveys with $k_{\parallel \mathrm {fg}}=0.005\,h\mathrm {Mpc}^{-1}$. \relax }}{88}{table.caption.63}%
\contentsline {table}{\numberline {3.8}{\ignorespaces Total SNR for interferometer-mode surveys with $k_{\parallel \mathrm {fg}}=0.005\, h\mathrm {Mpc}^{-1}$.\relax }}{88}{table.caption.64}%
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\contentsline {table}{\numberline {B.1}{\ignorespaces {Individual terms in the observed $\Delta _g^{(2)}(a,\bm {x})$ [see \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {eq:SecondorderNewtonian}\unskip \@@italiccorr )}}, \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {odg2}\unskip \@@italiccorr )}}] for $f_\text {NL}=0$ are shown in column 1. The related $\beta _I$ functions in \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {e2.23}\unskip \@@italiccorr )}} are listed in column 2. The Fourier-space kernels ${\cal F}$ corresponding to column 1, given by $ \DOTSI \intop \ilimits@ \!{\mathrm {d}\bm {k}'}\, {\cal F}(\bm {k}',\bm {k}-\bm {k}')\delta _{\mathrm {T}}(\bm {k}')\delta _{\mathrm {T}}(\bm {k}-\bm {k}')/(2\pi )^3$, are shown in column\nobreakspace {}3. Column 4 gives the coefficients of the terms in $\Delta _g^{(2)}$ (column 1). The line-of-sight derivative is $\partial _\|=\bm {n}\!\cdot \!\bm {\nabla }$ and $\Phi =\Psi $. The superscript (1) on first-order quantities has been omitted and N denotes Newtonian. This table updates the one in \cite {Jolicoeur:2017nyt}.}\relax }}{179}{table.a.B.1}%
\addvspace {10\p@ }
\contentsline {table}{\numberline {C.1}{\ignorespaces {The $f_\text {NL}\neq 0$ terms from relativistic projection effects [see \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {e2.35}\unskip \@@italiccorr )}}].}\relax }}{187}{table.caption.84}%
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\providecommand \tocbasic@end@toc@file {}\tocbasic@end@toc@file