-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmc.cpp
298 lines (283 loc) · 12.5 KB
/
mc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#include <iostream>
#include <vector>
#include <cmath>
#include <cstdlib>
#include <ctime>
class Node {
public:
int x, y, z, t;
bool status;
Node *prev;
Node *prev_judge;
Node *next;
Node(int x_val, int y_val, int z_val, int t_val) {
x = x_val;
y = y_val;
z = z_val;
t = t_val;
prev = nullptr;
prev_judge = nullptr;
next = nullptr;
status = false;
}
};
class WormPropagator {
private:
int nbosons;
int N, t, n_time_slice;
int starting_point_x, starting_point_y, starting_point_z, starting_time;
int direction;
double epsilon, chemical_potential;
int current_x, current_y, current_z, current_time;
Node *****dist;
public:
WormPropagator(int N_val, int n_time_slice_val, double chemical_potential_val, double epsilon_val, int t_val) {
N = N_val;
t = t_val;
n_time_slice = n_time_slice_val;
chemical_potential = chemical_potential_val;
epsilon = epsilon_val;
// Initialize dist
dist = new Node****[n_time_slice];
for (int i = 0; i < n_time_slice; ++i) {
dist[i] = new Node***[N];
for (int j = 0; j < N; ++j) {
dist[i][j] = new Node**[N];
for (int k = 0; k < N; ++k) {
dist[i][j][k] = new Node*[N];
for (int l = 0; l < N; ++l) {
dist[i][j][k][l] = new Node(l, k, j, i);
}
}
}
}
nbosons = 0;
starting_point_x = -1;
starting_point_y = -1;
starting_point_z = -1;
starting_time = -1;
direction = 0;
current_x = -1;
current_y = -1;
current_z = -1;
current_time = -1;
}
void initialization() {
int st_point = rand() % (N * N * N * n_time_slice);
starting_time = st_point / (N * N * N);
int position = st_point % (N * N * N);
starting_point_z = position / (N * N);
position = position % (N * N);
starting_point_y = position / N;
starting_point_x = position % N;
current_x = starting_point_x;
current_y = starting_point_y;
current_z = starting_point_z;
current_time = starting_time;
if (true) {
if (!dist[starting_time][starting_point_z][starting_point_y][starting_point_x]->status) {
dist[starting_time][starting_point_z][starting_point_y][starting_point_x]->status = true;
if ((double)rand() / (double) RAND_MAX <= std::min(1.0, exp(epsilon * chemical_potential))) {
direction = 1;
} else {
direction = -1;
}
} else {
direction = -1;
dist[starting_time][starting_point_z][starting_point_y][starting_point_x]->status = false;
}
}
}
void bond_update() {
if (direction == 1) {
if (current_time < n_time_slice - 1) {
current_time += 1;
double randomnum = (double)rand() / (double) RAND_MAX;
if (randomnum <= (double)1 - (double)6 * t * epsilon) {
dist[current_time - 1][current_z][current_y][current_x]->next = dist[current_time][current_z][current_y][current_x];
dist[current_time][current_z][current_y][current_x]->prev_judge = dist[current_time - 1][current_z][current_y][current_x];
}
else if (randomnum <= (double)1 - (double)5 * t * epsilon) {
dist[current_time - 1][current_z][current_y][current_x]->next = dist[current_time][current_z][current_y][(current_x + 1) % N];
dist[current_time][current_z][current_y][(current_x + 1) % N]->prev_judge = dist[current_time - 1][current_z][current_y][current_x];
}
else if (randomnum <= (double)1 - (double)4 * t * epsilon) {
dist[current_time-1][current_z][current_y][current_x]->next = dist[current_time][current_z][(current_y+1)% N][current_x];
dist[current_time][current_z][(current_y+1)% N][current_x]->prev_judge = dist[current_time-1][current_z][current_y][current_x];
}
else if (randomnum <= (double)1 - (double)3 * t * epsilon){
dist[current_time-1][current_z][current_y][current_x]->next = dist[current_time][(current_z+1)% N][current_y][current_x];
dist[current_time][(current_z+1)% N][current_y][current_x]->prev_judge = dist[current_time-1][current_z][current_y][current_x];
}
else if (randomnum <= (double)1 - (double)2 * t * epsilon){
dist[current_time-1][current_z][current_y][current_x]->next = dist[current_time][current_z][current_y][(current_x-1+N)% N];
dist[current_time][current_z][current_y][(current_x-1+N)% N]->prev_judge = dist[current_time-1][current_z][current_y][current_x];
}
else if (randomnum <= (double)1 - (double)t * epsilon){
dist[current_time-1][current_z][current_y][current_x]->next = dist[current_time][current_z][(current_y-1+N)% N][current_x];
dist[current_time][current_z][(current_y-1+N)% N][current_x]->prev_judge = dist[current_time-1][current_z][current_y][current_x];
}
else if (randomnum <= (double)1){
dist[current_time-1][current_z][current_y][current_x]->next = dist[current_time][(current_z-1+N)% N][current_y][current_x];
dist[current_time][(current_z-1+N)% N][current_y][current_x]->prev_judge = dist[current_time-1][current_z][current_y][current_x];
}
// ... More conditions to be translated similarly
int curr_x = dist[current_time - 1][current_z][current_y][current_x]->next->x;
int curr_y = dist[current_time - 1][current_z][current_y][current_x]->next->y;
int curr_z = dist[current_time - 1][current_z][current_y][current_x]->next->z;
current_x = curr_x;
current_y = curr_y;
current_z = curr_z;
}
else if (current_time == n_time_slice - 1) {
current_time = 0;
dist[n_time_slice - 1][current_z][current_y][current_x]->next = dist[0][current_z][current_y][current_x];
dist[0][current_z][current_y][current_x]->prev_judge = dist[n_time_slice - 1][current_z][current_y][current_x];
}
} else if (direction == -1) {
dist[current_time][current_z][current_y][current_x]->status = false;
int curr_x = dist[current_time][current_z][current_y][current_x]->prev->x;
int curr_y = dist[current_time][current_z][current_y][current_x]->prev->y;
int curr_z = dist[current_time][current_z][current_y][current_x]->prev->z;
dist[current_time][current_z][current_y][current_x]->prev->next = nullptr;
dist[current_time][current_z][current_y][current_x]->prev = nullptr;
current_x = curr_x;
current_y = curr_y;
current_z = curr_z;
if (current_time > 0) {
current_time -= 1;
} else if (current_time == 0) {
current_time = n_time_slice - 1;
}
}
return;
}
void site_update() {
if (direction == -1) {
if ((double)rand() / (double) RAND_MAX < std::min(1.0, exp(-epsilon * chemical_potential))) {
direction = -1;
} else {
direction = 1;
}
} else if (direction == 1) {
if ((double)rand() / (double) RAND_MAX < std::min(1.0, exp(epsilon * chemical_potential))) {
direction = 1;
} else {
direction = -1;
}
}
return;
}
void propagator_new() {
bool judgement = true;
bool prop;
int curr_x;
int curr_y;
int curr_z;
while (judgement) {
bond_update();
if (direction == 1 && current_time == starting_time && current_x == starting_point_x && current_y == starting_point_y && current_z == starting_point_z) {
judgement = false;
dist[current_time][current_z][current_y][current_x]->status = true;
dist[current_time][current_z][current_y][current_x]->prev = dist[current_time][current_z][current_y][current_x]->prev_judge;
dist[current_time][current_z][current_y][current_x]->prev_judge = nullptr;
}
else if (direction == 1){
prop = dist[current_time][current_z][current_y][current_x]->status;
if (prop == false){
site_update();
dist[current_time][current_z][current_y][current_x]->status = true;
dist[current_time][current_z][current_y][current_x]->prev = dist[current_time][current_z][current_y][current_x]->prev_judge;
dist[current_time][current_z][current_y][current_x]->prev_judge = nullptr;
}
else {
curr_x = dist[current_time][current_z][current_y][current_x]->prev->x;
curr_y = dist[current_time][current_z][current_y][current_x]->prev->y;
curr_z = dist[current_time][current_z][current_y][current_x]->prev->z;
dist[current_time][current_z][current_y][current_x]->prev = dist[current_time][current_z][current_y][current_x]->prev_judge;
dist[current_time][current_z][current_y][current_x]->prev_judge = nullptr;
current_x = curr_x;
current_y = curr_y;
current_z = curr_z;
current_time = (current_time - 1 + n_time_slice) % n_time_slice;
direction = -1;
site_update();
if ((current_x == starting_point_x) && (current_y == starting_point_y) && (current_z == starting_point_z) && (current_time == starting_time) && (direction == -1))
{
judgement = false;
dist[current_time][current_z][current_y][current_x]->status = false;
dist[current_time][current_z][current_y][current_x]->next = nullptr;
}
}
}
else if (direction == -1)
{
site_update();
if ((direction == -1) && (current_time == starting_time) && (current_x == starting_point_x) && (current_y == starting_point_y) && (current_z == starting_point_z))
{
judgement = false;
dist[current_time][current_z][current_y][current_x]->status = false;
}
}
}
return;
}
int particle_sampler(){
int ncount = 0;
for (int i = 0; i < N; i++){
for (int j = 0; j < N; j++){
for (int k = 0; k < N; k++){
if (dist[0][i][j][k]->status){
ncount = ncount+1;
}
}
}
}
return ncount;
}
};
int main() {
srand(time(NULL));
int Ntimes;
std::cin >> Ntimes;
double aveN[Ntimes];
double aveE[Ntimes];
double chemical_potential[1] = {1.0};
for (int l = 0; l < 1; l++){
WormPropagator worm((int)24, (int) 111, chemical_potential[l], (double)0.01, (double)1.0); // N, n_time_slice, chemical_potential, epsilon, t
for (int i = 0; i < Ntimes; ++i) {
double aveone[5000];
double aveEone[5000];
for (int j = 0; j < 5000; ++j) {
worm.initialization();
worm.propagator_new();
// Call other member functions accordingly...
// Uncomment to print particle_sampler() output
if (j % 500 == 0) {
std::cout << worm.particle_sampler() << " " << (j / 5000.0 / Ntimes + i / (double)Ntimes) << std::endl;
}
aveone[j] = worm.particle_sampler();
}
double sum = 0.0;
for (int j = 0; j<5000; j++) {
sum += aveone[j];
}
aveN[i] = sum / (double) 5000;
}
// Print aveN values
double sum1 = 0.0;
for (int i = 1; i < Ntimes; i++) {
std::cout << aveN[i] << " ";
sum1 += aveN[i];
}
double l1 = sum1/((double)Ntimes-(double)1);
std::cout << l1 << std::endl;
double sum2 = 0.0;
for (int i = 1; i < Ntimes; i++){
sum2 += (aveN[i]-l1)*(aveN[i]-l1);
}
sum2 = sqrt(sum2/(Ntimes-1));
std::cout << sum2 << std::endl;
}
return 0;
}