-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHW7
226 lines (186 loc) · 5.76 KB
/
HW7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
##HW 7
#problem 2
#part a
##function to assign neighbors to check
neighbors <- function(x, y, lim){
# The "lim" parameter assumes a square matrix and represents the length
# of one side of our grid.
x.n <- sapply(c(-1,0,1),function(i)x+i)
y.n <- sapply(c(-1,0,1),function(i)y+i)
x.n <- x.n[0 < x.n & x.n <= lim]
y.n <- y.n[0 < y.n & y.n <= lim]
G <- rbind(expand.grid(x, y.n), expand.grid(x.n, y))
as.matrix(G[G[,1]!= x | G[,2]!= y ,])}
##function to decide if those neighbors are occupied
occupied <- function(M, x, y){
G <- neighbors(x,y, lim = nrow(M))
ifelse(any(M[G] == 1), F, T)}
n <- 2e4
Sums <- matrix(data = 0, ncol = 1, nrow = n)
colnames(Sums) <- c("Overall Mean")
accepted = 0
rejected = 0
runs = 10
steady <- matrix(data = NA, nrow = runs, ncol = 2)
steady2 <- matrix(data = NA, nrow = runs, ncol = 2)
steady3 <- matrix(data = NA, nrow = runs, ncol = 2)
colnames(steady3) <- c("Steady State", "Accepted Percentage")
mat <- matrix(data = 1, nrow = 500, ncol = 500)
mat.2 <- mat
for (q in 1:runs){
for (z in 1:n){
U <- runif(1)
W <- rbinom(1, 10, .1)
x <- sample(1:dim(mat.2)[1], W)
y <- sample(1:dim(mat.2)[2], W)
for (k in 1:W){
if (mat.2[x[k],y[k]] == 1){ mat.2[x[k],y[k]] = 0}
if(mat.2[x[k],y[k]] == 0 & occupied(mat.2,x[k],y[k]) == TRUE) {
mat[x[k],y[k]] = 1
}
}
diff <- (-sum(mat.2) + sum(mat))
if (U < min(1, exp(-diff))){
mat.2 <- mat;
accepted = accepted + 1
} else {
mat <- mat.2;
rejected = rejected + 1
}
Sums[z,1] <- sum(mat)
cat (z, "|", q, "\n")
}
steady3[q,] <- c(sum(mat)/(500^2), accepted/z)
accepted = 0
rejected = 0
}
##mean and sd
steadystate <- rbind(steady, steady2, steady3)
write.csv(steadystate, "C:/Users/eric/Desktop/GTown Stats/math 611/steadystate.csv")
plot(steadystate[,1], main = "Steady State Analysis",
xlab = "Runs", ylab = "Percentages")
##image
image(mat.2 * 128, main = "Final State Proposal")
#problem 3
#part a
df = data.frame(black=c(68,20,15,5)
,brunette=c(119,84,54,29)
,red=c(26,17,14,14)
,blond=c(7,94,10,16)
,row.names=c("brown","blue","hazel","green")
)
chi_test <- chisq.test(df)
chi_test
##output
##Pearson's Chi-squared test
##data: df
##X-squared = 138.2898, df = 9, p-value < 2.2e-16
#part b
contingency <- function(d){
x <- sample(1:4, 2, replace = FALSE);
y <- sample(1:4, 2, replace = FALSE)
if(d[x[1],y[2]] - 1 & d[x[2],y[1]] - 1 > 0) {
d[x[1],y[1]] = d[x[1],y[1]] + 1
d[x[1],y[2]] = d[x[1],y[2]] - 1
d[x[2],y[1]] = d[x[2],y[1]] - 1
d[x[2],y[2]] = d[x[2],y[2]] + 1
} else if (d[x[1],y[1]] - 1 & d[x[2],y[2]] - 1 > 0) {
d[x[1],y[1]] = d[x[1],y[1]] - 1
d[x[1],y[2]] = d[x[1],y[2]] + 1
d[x[2],y[1]] = d[x[2],y[1]] + 1
d[x[2],y[2]] = d[x[2],y[2]] - 1
} else {
x <- sample(1:4, 2, replace = FALSE);
y <- sample(1:4, 2, replace = FALSE)
}
return(d)
}
calc.chi <- function(d){
E1 <- (sum(d[1,]) * sum(d[,1])) / 592
E2 <- (sum(d[1,]) * sum(d[,2])) / 592
E3 <- (sum(d[1,]) * sum(d[,3])) / 592
E4 <- (sum(d[1,]) * sum(d[,4])) / 592
E5 <- (sum(d[2,]) * sum(d[,1])) / 592
E6 <- (sum(d[2,]) * sum(d[,2])) / 592
E7 <- (sum(d[2,]) * sum(d[,3])) / 592
E8 <- (sum(d[2,]) * sum(d[,4])) / 592
E9 <- (sum(d[3,]) * sum(d[,1])) / 592
E10 <- (sum(d[3,]) * sum(d[,2])) / 592
E11 <- (sum(d[3,]) * sum(d[,3])) / 592
E12 <- (sum(d[3,]) * sum(d[,4])) / 592
E13 <- (sum(d[4,]) * sum(d[,1])) / 592
E14 <- (sum(d[4,]) * sum(d[,2])) / 592
E15 <- (sum(d[4,]) * sum(d[,3])) / 592
E16 <- (sum(d[4,]) * sum(d[,4])) / 592
chi <- (d[1,1] - E1)^2 / E1 + (d[1,2] - E2)^2 / E2 + (d[1,3] - E3)^2 / E3 + (d[1,4] - E4)^2 / E4 +
(d[2,1] - E5)^2 / E5 + (d[2,2] - E6)^2 / E6 + (d[2,3] - E7)^2 / E7 + (d[2,4] - E8)^2 / E8 +
(d[3,1] - E9)^2 / E9 + (d[3,2] - E10)^2 / E10 + (d[3,3] - E11)^2 / E11 + (d[3,4] - E12)^2 / E12 +
(d[4,1] - E13)^2 / E13+ (d[4,2] - E14)^2 / E14 + (d[4,3] - E15)^2 / E15 + (d[4,4] - E16)^2 / E16
return(chi)
}
n <- 1e5
values <- matrix(data = NA, nrow = n, ncol = 1)
colnames(values) <- c("X Squared Value")
for (i in 1:n){
df <- contingency(df)
values[i,1] <- calc.chi(df)
cat(i, "\n")
}
hist(values, breaks = 100, main = "Histogram of Chi Squared Stat", ylab = "Frequency", xlab = "X Sq Stat")
write.csv(values, "C:/Users/petersone/Desktop/values.csv")
#problem 4
#part a
JumpTime <- function(t){
a <- 5 * (10^-4)
b <- 7.5858 * (10^-5)
c <- log(1.09144)
r_t <- a + b * exp(c*t)
return(r_t)
}
r <- rep(NA, 200)
for (j in 1:200){
r[j] <- JumpTime(j)
}
plot(r, type = "l", main = "r(t) rate for first 200 time periods", ylab = "r(t)", xlab = "iteration")
countJumps <- function(n){
X <- rep(NA, n)
Y <- rep(NA, n)
for (i in 1:n){
X[i] <- rexp(1)
}
Y <- cumsum(X)
combo <- cbind(X,Y)
colnames(combo) <- c("Arrival Time", "Cumulative Arrival Time")
return(combo)
}
#partb
SamplerJumps <- function(t){
X <- c()
age <- 0
for (i in 1:t) {
U <- runif(1, JumpTime(100))
X[i] <- rexp(1)
Y <- cumsum(X)
if (U < JumpTime(i)/JumpTime(100)){
age <- Y[i]
cat("Age Jump:", age, "\n")
}
if (age > t){ break }
}
}
#part c
t <- 60
lam <- seq(from = 1, to = t, by = 0.01)
PdF <- exp(-lam * t)
plot(PdF, type = "l", xlim = c(0,60), main = "PDF of Survival Time")
#part d
success <- function(groupSize){
X <- matrix(data = NA, nrow = groupSize, ncol = 2)
sucRate <- pexp(1,rate = JumpTime(80)) - pexp(1, rate = JumpTime(25))
failRate <- 1 - sucRate
for (i in 1:groupSize){
X[i,] <- c(i,(factorial(groupSize)/((factorial(i) * factorial(groupSize - i)))) * sucRate^i * failRate^(groupSize - i))
}
colnames(X) <- c("Total Survived", "Probability")
return(X)
}