-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_sort.py
147 lines (108 loc) · 4.6 KB
/
data_sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/bin/python3
"""Sort the data from csv files after image analysis"""
from datetime import datetime
import pandas as pd
import numpy as np
DATE = datetime.today().strftime('%Y-%m-%d')
with open("pipeline_parameters.txt", 'r') as anda_parameters:
analysis_read = anda_parameters.read().splitlines()
dir_ = analysis_read[0] # Directory
ar_threshold = analysis_read[4] # Aspect ratio threshold
with open(f'{dir_}/file_names.txt', 'r', encoding="utf8") as file_names:
file_list = file_names.readlines()
file_list = [i.rstrip() for i in file_list]
cell_area = [] # Area selection, area preoccupied by identified particle
cell_width = [] # Width of minor axis of a fitted ellipse
cell_length = [] # Length of major axis of a fitted ellipse
cell_num_count = [] # Number of identified particles
cell_image = []
neurite_area = [] # Area selection, area preoccupied by identified particle
neurite_width = [] # Width of minor axis of a fitted ellipse
neurite_length = [] # Length of major axis of a fitted ellipse
neurite_num_count = [] # Number of identified particles
neurite_ar_removals = [] # Particles removed for not surpassing user set aspect ratio threshold
neurite_image = []
attachment_num_count = [] # Number of identified particles
attachment_image = []
def append_zeros(*args):
""" Append zero to the parameter lists if no parameters were identified"""
for i in args:
i.append(0)
return args
def write_dataframe(metric, output):
"""Convert metrics dictionary to pandas dataframe and write to csv"""
dataframe = pd.DataFrame(data = metric)
return dataframe.to_csv(f"{DATE}_{output}")
def cell_sort():
"""Sort cell body results"""
for file_ in file_list:
try:
data = pd.read_csv(f"{dir_}_results_cells/{file_}.csv", \
usecols = ['Area', 'Minor', 'Major'])
count = len(data["Area"])
mean_area = np.mean(data["Area"])
mean_width = np.mean(data["Minor"])
mean_length = np.mean(data["Major"])
cell_num_count.append(count)
cell_area.append(mean_area)
cell_width.append(mean_width)
cell_length.append(mean_length)
cell_image.append(f"{file_}")
except FileNotFoundError:
append_zeros(cell_num_count, cell_area, cell_width, cell_length)
cell_image.append(f"{file_}")
metrics_dict = {'Image': cell_image,
'Count': cell_num_count,
'Mean_area': cell_area,
'Mean_width': cell_width,
'Mean_length': cell_length}
write_dataframe(metrics_dict, "cells")
def neurite_sort():
"""Sort neurite length results"""
for file_ in file_list:
try:
data = pd.read_csv(f"{dir_}_results_neurites/{file_}.csv", \
usecols = ['Area', 'Minor', 'Major', 'AR'])
if ar_threshold > 0:
data_2 = data[data['AR'] > ar_threshold]
mean_length = np.mean(data_2["Major"])
mean_width = np.mean(data_2["Minor"])
mean_area = np.mean(data_2["Area"])
neurite_ar_removals.append(len(data) - len(data_2))
else:
mean_length = np.mean(data["Major"])
mean_width = np.mean(data["Minor"])
mean_area = np.mean(data["Area"])
neurite_ar_removals.append(0)
count = len(data["Area"])
neurite_num_count.append(count)
neurite_area.append(mean_area)
neurite_width.append(mean_width)
neurite_length.append(mean_length)
neurite_image.append(f"{file_}")
except :
append_zeros(neurite_num_count, neurite_area, neurite_width, neurite_length)
neurite_image.append(f"{file_}")
metrics_dict = {'Image': neurite_image,
'Count': neurite_num_count,
'Mean_area': neurite_area,
'Mean_width': neurite_width,
'Mean_length': neurite_length}
write_dataframe(metrics_dict, "neurites")
def attachment_sort():
"""Sort neurite attachment point results"""
for file_ in file_list:
try:
data = pd.read_csv(f"{dir_}_results_attachments/{file_}.csv", usecols = ['Area'])
count = len(data["Area"])
attachment_num_count.append(count)
attachment_image.append(f"{file_}")
except FileNotFoundError:
attachment_num_count.append(0)
attachment_image.append(f"{file_}")
metrics_dict = {'Image': attachment_image,
'Count': attachment_num_count}
write_dataframe(metrics_dict, "attachments")
cell_sort()
neurite_sort()
attachment_sort()