-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_vision_1.py
79 lines (68 loc) · 2.63 KB
/
feature_vision_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import numpy as np
from PIL import Image
import torch.nn as nn
from torchvision import transforms
from torch.nn import functional as F
import matplotlib.pyplot as plt
from torch.nn import init
class Baseblock(nn.Module):
def __init__(self, in_channels):
super(Baseblock, self).__init__()
self.p_size=[1,1,1,1]
self.pool1 = nn.MaxPool2d(kernel_size=self.p_size[0], stride=self.p_size[0])
self.pool2 = nn.MaxPool2d(kernel_size=self.p_size[1], stride=self.p_size[1])
self.pool3 = nn.MaxPool2d(kernel_size=self.p_size[2], stride=self.p_size[2])
self.pool4 = nn.MaxPool2d(kernel_size=self.p_size[3], stride=self.p_size[3])
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=1,dilation=2, kernel_size=3, padding=2)
self.relu=nn.ReLU()
for m in self.modules():
if isinstance(m, nn.Conv2d):
# nn.init.ones_(m.weight.data)
# init.constant_(m.weight.data,1.0)
nn.init.kaiming_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
init.normal_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
def forward(self, x):
x_size= x.size()
layer0=self.conv(x)
layer1 = F.interpolate(self.conv(self.pool1(x)), size=(x_size[2:]), mode='bilinear',align_corners=True)
layer2 = F.interpolate(self.conv(self.pool2(x)), size=(x_size[2:]), mode='bilinear',align_corners=True)
layer3 = F.interpolate(self.conv(self.pool3(x)), size=(x_size[2:]), mode='bilinear',align_corners=True)
layer4 = F.interpolate(self.conv(self.pool4(x)), size=(x_size[2:]), mode='bilinear',align_corners=True)
return layer0,layer1,layer2,layer3,layer4
#open img
pic=Image.open(r"E:\Picture\000018.jpg")
pic=np.array(pic)
channel=3
if len(pic.shape)<3:
channel=1
pic=np.reshape(pic,pic.shape+(1,))
# run model
tr=transforms.ToTensor()
fig = plt.figure(figsize=(20,30))
p=tr(pic)
p=p.unsqueeze(0)
model=Baseblock(channel)
model.eval()
pl=model(p)
# output
ppp=[]
for i in range(len(pl)):
if len(pl)==1:
t=pl.permute(0,2,3,1)
else:
t=pl[i].permute(0,2,3,1)
ppp.append(t.data.numpy().squeeze())
#imgshow
for i in range(len(ppp)):
ax = fig.add_subplot(5,2,i+1)
im = ax.imshow(ppp[i], cmap=plt.get_cmap('hot'), interpolation='nearest')# important function
plt.colorbar(im, shrink=0.2)
ax = fig.add_subplot(5,2,len(ppp)+1)
im = ax.imshow(pic, cmap=plt.get_cmap('hot'), interpolation='nearest')
plt.colorbar(im, shrink=0.2)
plt.show()