-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathRBFilter_AVX2.cpp
1226 lines (983 loc) · 39.8 KB
/
RBFilter_AVX2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "stdafx.h"
#include "RBFilter_AVX2.h"
#include <math.h>
#include <malloc.h>
#include <new>
#include <emmintrin.h>
#include <tmmintrin.h>
#include <immintrin.h>
#include <smmintrin.h>
#include <thread>
#define MAX_RANGE_TABLE_SIZE 255
#define ALIGN_SIZE 32
// only 1 of following 2 should be defined
#define EDGE_COLOR_USE_MAXIMUM
//#define EDGE_COLOR_USE_ADDITION
// if EDGE_COLOR_USE_MAXIMUM is defined, then edge color detection works by calculating
// maximum difference among 3 components (RGB) of 2 colors, which tends to result in lower differences (since only largest among 3 is selected)
// if EDGE_COLOR_USE_ADDITION is defined, then edge color detection works by calculating
// sum of all 3 components, while enforcing 255 maximum. This method is much more sensitive to small differences
#if defined(EDGE_COLOR_USE_MAXIMUM) && defined(EDGE_COLOR_USE_ADDITION)
#error Only 1 of those can be defined
#endif
#if !defined(EDGE_COLOR_USE_MAXIMUM) && !defined(EDGE_COLOR_USE_ADDITION)
#error 1 of those must be defined
#endif
CRBFilterAVX2::CRBFilterAVX2()
{
m_range_table = new float[MAX_RANGE_TABLE_SIZE + 1];
memset(m_range_table, 0, (MAX_RANGE_TABLE_SIZE + 1) * sizeof(float));
}
CRBFilterAVX2::~CRBFilterAVX2()
{
release();
delete[] m_range_table;
}
bool CRBFilterAVX2::initialize(int width, int height, int thread_count, bool pipelined)
{
// basic sanity check, not strict
if (width < 16 || width > 10000)
return false;
if (height < 2 || height > 10000)
return false;
if (thread_count < 1 || thread_count > RBF_MAX_THREADS)
return false;
release();
m_thread_count = thread_count;
// round height to nearest even number
if (height & 1)
height++;
m_reserved_width = getOptimalPitch(width) / 4;
m_reserved_height = height;
m_stage_buffer[0] = (unsigned char*)_aligned_malloc(m_reserved_width * m_reserved_height * 4, ALIGN_SIZE);
if (!m_stage_buffer[0])
return false;
if (pipelined)
{
for (int i = 1; i < STAGE_BUFFER_COUNT; i++)
{
m_stage_buffer[i] = (unsigned char*)_aligned_malloc(m_reserved_width * m_reserved_height * 4, ALIGN_SIZE);
if (!m_stage_buffer[i])
return false;
}
}
/////////////////
m_h_line_cache = new (std::nothrow) float*[m_thread_count];
if (!m_h_line_cache)
return false;
// zero just in case
for (int i = 0; i < m_thread_count; i++)
m_h_line_cache[i] = nullptr;
for (int i = 0; i < m_thread_count; i++)
{
m_h_line_cache[i] = (float*)_aligned_malloc(m_reserved_width * 12 * sizeof(float) * 2 + 128, ALIGN_SIZE);
if (!m_h_line_cache[i])
return false;
// 1st 8 bytes of line cache should remain constant zero
memset(m_h_line_cache[i], 0, 8 * sizeof(float));
}
////////////////
m_v_line_cache = new (std::nothrow) float*[m_thread_count];
if (!m_v_line_cache)
return false;
for (int i = 0; i < m_thread_count; i++)
m_v_line_cache[i] = nullptr;
int v_line_size = (m_reserved_width * 16 * sizeof(float)) / m_thread_count;
for (int i = 0; i < m_thread_count; i++)
{
m_v_line_cache[i] = (float*)_aligned_malloc(v_line_size, ALIGN_SIZE);
if (!m_v_line_cache[i])
return false;
}
return true;
}
void CRBFilterAVX2::release()
{
for (int i = 0; i < STAGE_BUFFER_COUNT; i++)
{
if (m_stage_buffer[i])
{
_aligned_free(m_stage_buffer[i]);
m_stage_buffer[i] = nullptr;
}
}
if (m_h_line_cache)
{
for (int i = 0; i < m_thread_count; i++)
{
if (m_h_line_cache[i])
_aligned_free(m_h_line_cache[i]);
}
delete[] m_h_line_cache;
m_h_line_cache = nullptr;
}
if (m_v_line_cache)
{
for (int i = 0; i < m_thread_count; i++)
{
if (m_v_line_cache[i])
_aligned_free(m_v_line_cache[i]);
}
delete[] m_v_line_cache;
m_v_line_cache = nullptr;
}
m_reserved_width = 0;
m_reserved_height = 0;
m_thread_count = 0;
m_pipelined = false;
m_filter_counter = 0;
}
int CRBFilterAVX2::getOptimalPitch(int width) const
{
width *= 4;
int round_up = ALIGN_SIZE * m_thread_count;
if (width % round_up)
{
width += round_up - width % round_up;
}
return width;
}
void CRBFilterAVX2::setSigma(float sigma_spatial, float sigma_range)
{
if (m_sigma_spatial != sigma_spatial || m_sigma_range != sigma_range)
{
m_sigma_spatial = sigma_spatial;
m_sigma_range = sigma_range;
double alpha_f = (exp(-sqrt(2.0) / (sigma_spatial * 255.0)));
m_inv_alpha_f = (float)(1.0 - alpha_f);
double inv_sigma_range = 1.0 / (sigma_range * MAX_RANGE_TABLE_SIZE);
{
double ii = 0.f;
for (int i = 0; i <= MAX_RANGE_TABLE_SIZE; i++, ii -= 1.0)
{
m_range_table[i] = (float)(alpha_f * exp(ii * inv_sigma_range));
}
}
}
}
// example of edge color difference calculation from original implementation
// idea is to fit maximum edge color difference as single number in 0-255 range
// colors are added then 2 components are scaled 4x while 1 complement is scaled 2x
// this means 1 of the components is more dominant
//int getDiffFactor(const unsigned char* color1, const unsigned char* color2)
//{
// int c1 = abs(color1[0] - color2[0]);
// int c2 = abs(color1[1] - color2[1]);
// int c3 = abs(color1[2] - color2[2]);
//
// return ((c1 + c3) >> 2) + (c2 >> 1);
//}
inline void getDiffFactor3x(__m256i pix8, __m256i pix8p, __m256i* diff8x)
{
__m256i byte_mask = _mm256_set1_epi32(255);
// get absolute difference for each component per pixel
__m256i diff = _mm256_sub_epi8(_mm256_max_epu8(pix8, pix8p), _mm256_min_epu8(pix8, pix8p));
#ifdef EDGE_COLOR_USE_MAXIMUM
// get maximum of 3 components
__m256i diff_shift1 = _mm256_srli_epi32(diff, 8); // 2nd component
diff = _mm256_max_epu8(diff, diff_shift1);
diff_shift1 = _mm256_srli_epi32(diff_shift1, 8); // 3rd component
diff = _mm256_max_epu8(diff, diff_shift1);
// skip alpha component
diff = _mm256_and_si256(diff, byte_mask); // zero out all but 1st byte
#endif
#ifdef EDGE_COLOR_USE_ADDITION
// add all component differences and saturate
__m256i diff_shift1 = _mm256_srli_epi32(diff, 8); // 2nd component
diff = _mm256_adds_epu8(diff, diff_shift1);
diff_shift1 = _mm256_srli_epi32(diff_shift1, 8); // 3rd component
diff = _mm256_adds_epu8(diff, diff_shift1);
diff = _mm256_and_si256(diff, byte_mask); // zero out all but 1st byte
#endif
_mm256_store_si256(diff8x, diff);
}
void CRBFilterAVX2::horizontalFilter(int thread_index, const unsigned char* img_src, unsigned char* img_dst, int width, int height, int pitch)
{
// force height segments to be even cause this filter processes 2 lines at a time
int height_segment = (height / m_thread_count) & (~1);
int buffer_offset = thread_index * height_segment * pitch;
img_src += buffer_offset;
img_dst += buffer_offset;
int width32 = pitch / 32;
// last segment should account for uneven height
// since reserve buffer height is rounded up to even number, it's OK if source is uneven
// but that assumes hozitonal filter output buffer is the reservered buffer, or that destination is rounded up to even number
if (thread_index + 1 == m_thread_count)
height_segment = height - thread_index * height_segment;
// float* alpha_cache_start = m_alpha_cache[thread_index];
// cache line structure:
// 4 floats of alpha_f from line 1
// 4 floats of alpha_f from line 2
// 4 floats of source color premultiplied with 'm_inv_alpha_f' from line 1
// 4 floats of source color premultiplied with 'm_inv_alpha_f' from line 2
// 4 floats of 1st pass result color from line 1
// 4 floats of 1st pass result color from line 2
float* line_cache = m_h_line_cache[thread_index];
const float* range_table = m_range_table;
__declspec(align(32)) long color_diff[16];
_mm256_zeroall();
__m256i mask_unpack = _mm256_setr_epi8(12, -1, -1, -1, // pixel 1 R
13, -1, -1, -1, // pixel 1 G
14, -1, -1, -1, // pixel 1 B
15, -1, -1, -1, // pixel 1 A
12, -1, -1, -1, // pixel 2 R
13, -1, -1, -1, // pixel 2 G
14, -1, -1, -1, // pixel 2 B
15, -1, -1, -1);// pixel 2 A
__m256i mask_pack = _mm256_setr_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 4, 8, 12, // pixel 1
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 4, 8, 12); // pixel 2
__m256 inv_alpha = _mm256_set1_ps(m_inv_alpha_f);
// process 2 horizontal lines at a time
for (int y = 0; y < height_segment; y+= 2)
{
__m256 alpha_prev = _mm256_set1_ps(1.f);
__m256 color_prev;
float* line_buffer = line_cache + 24 * pitch / 4;
// 1st line
int buffer_inc = (y + 1) * pitch - 32;
const __m256i* src1_8xCur = (const __m256i*)(img_src + buffer_inc);
const __m256i* src1_8xPrev = (const __m256i*)(img_src + buffer_inc + 4);
// 2nd line
buffer_inc += pitch;
const __m256i* src2_8xCur = (const __m256i*)(img_src + buffer_inc);
const __m256i* src2_8xPrev = (const __m256i*)(img_src + buffer_inc + 4);
/////////////////////////////
// right to left pass
for (int x = 0; x < width32; x++)
{
__m256i pix8_1 = _mm256_load_si256(src1_8xCur--);
__m256i pix8p_1 = _mm256_loadu_si256(src1_8xPrev--);
getDiffFactor3x(pix8_1, pix8p_1, (__m256i*)color_diff);
__m256i pix8_2 = _mm256_load_si256(src2_8xCur--);
__m256i pix8p_2 = _mm256_loadu_si256(src2_8xPrev--);
getDiffFactor3x(pix8_2, pix8p_2, (__m256i*)(color_diff + 8));
// last 4 pixels of 2 lines
__m256i pix8 = _mm256_permute2f128_si256(pix8_1, pix8_2, 1 | (3 << 4));
////////////////////
// pixel 1 unpack
{
// alpha factor
float alpha2_f = range_table[color_diff[7]];
float alpha1_f = range_table[color_diff[7 + 8]];
__m256 alpha_f_8x = _mm256_set_ps(alpha1_f, alpha1_f, alpha1_f, alpha1_f,
alpha2_f, alpha2_f, alpha2_f, alpha2_f);
_mm256_store_ps(line_buffer, alpha_f_8x); // cache weights
// source pixel
__m256i pix2i = _mm256_shuffle_epi8(pix8, mask_unpack); // extracts 1 pixel components from BYTE to DWORD
__m256 pix2f = _mm256_cvtepi32_ps(pix2i); // convert to floats
if (x == 0) // have to initialize prev_color with last pixel color, this condition has no noticeable penalty
color_prev = pix2f;
pix2f = _mm256_mul_ps(pix2f, inv_alpha); // pre-multiply source color
_mm256_store_ps(line_buffer + 8, pix2f);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
_mm256_store_ps(line_buffer + 16, out_color); // cache final color
line_buffer -= 24;
}
////////////////////
// pixel 2 unpack
{
// alpha factor
float alpha2_f = range_table[color_diff[6]];
float alpha1_f = range_table[color_diff[6 + 8]];
__m256 alpha_f_8x = _mm256_set_ps(alpha1_f, alpha1_f, alpha1_f, alpha1_f,
alpha2_f, alpha2_f, alpha2_f, alpha2_f);
_mm256_store_ps(line_buffer, alpha_f_8x); // cache weights
// source pixel
pix8 = _mm256_slli_si256(pix8, 4); // shift left to unpack next pixel
__m256i pix2i = _mm256_shuffle_epi8(pix8, mask_unpack); // extracts 1 pixel components from BYTE to DWORD
__m256 pix2f = _mm256_cvtepi32_ps(pix2i); // convert to floats
pix2f = _mm256_mul_ps(pix2f, inv_alpha); // pre-multiply source color
_mm256_store_ps(line_buffer + 8, pix2f);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
_mm256_store_ps(line_buffer + 16, out_color); // cache final color
line_buffer -= 24;
}
////////////////////
// pixel 3 unpack
{
// alpha factor
float alpha2_f = range_table[color_diff[5]];
float alpha1_f = range_table[color_diff[5 + 8]];
__m256 alpha_f_8x = _mm256_set_ps(alpha1_f, alpha1_f, alpha1_f, alpha1_f,
alpha2_f, alpha2_f, alpha2_f, alpha2_f);
_mm256_store_ps(line_buffer, alpha_f_8x); // cache weights
// source pixel
pix8 = _mm256_slli_si256(pix8, 4); // shift left to unpack next pixel
__m256i pix2i = _mm256_shuffle_epi8(pix8, mask_unpack); // extracts 1 pixel components from BYTE to DWORD
__m256 pix2f = _mm256_cvtepi32_ps(pix2i); // convert to floats
pix2f = _mm256_mul_ps(pix2f, inv_alpha); // pre-multiply source color
_mm256_store_ps(line_buffer + 8, pix2f);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
_mm256_store_ps(line_buffer + 16, out_color); // cache final color
line_buffer -= 24;
}
////////////////////
// pixel 4 unpack
{
// alpha factor
float alpha2_f = range_table[color_diff[4]];
float alpha1_f = range_table[color_diff[4 + 8]];
__m256 alpha_f_8x = _mm256_set_ps(alpha1_f, alpha1_f, alpha1_f, alpha1_f,
alpha2_f, alpha2_f, alpha2_f, alpha2_f);
_mm256_store_ps(line_buffer, alpha_f_8x); // cache weights
// source pixel
pix8 = _mm256_slli_si256(pix8, 4); // shift left to unpack next pixel
__m256i pix2i = _mm256_shuffle_epi8(pix8, mask_unpack); // extracts 1 pixel components from BYTE to DWORD
__m256 pix2f = _mm256_cvtepi32_ps(pix2i); // convert to floats
pix2f = _mm256_mul_ps(pix2f, inv_alpha); // pre-multiply source color
_mm256_store_ps(line_buffer + 8, pix2f);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
_mm256_store_ps(line_buffer + 16, out_color); // cache final color
line_buffer -= 24;
}
// next 4 pixels of 2 lines
pix8 = _mm256_permute2f128_si256(pix8_1, pix8_2, 2 << 4);
////////////////////
// pixel 5 unpack
{
// alpha factor
float alpha2_f = range_table[color_diff[3]];
float alpha1_f = range_table[color_diff[3 + 8]];
__m256 alpha_f_8x = _mm256_set_ps(alpha1_f, alpha1_f, alpha1_f, alpha1_f,
alpha2_f, alpha2_f, alpha2_f, alpha2_f);
_mm256_store_ps(line_buffer, alpha_f_8x); // cache weights
// source pixel
__m256i pix2i = _mm256_shuffle_epi8(pix8, mask_unpack); // extracts 1 pixel components from BYTE to DWORD
__m256 pix2f = _mm256_cvtepi32_ps(pix2i); // convert to floats
pix2f = _mm256_mul_ps(pix2f, inv_alpha); // pre-multiply source color
_mm256_store_ps(line_buffer + 8, pix2f);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
_mm256_store_ps(line_buffer + 16, out_color); // cache final color
line_buffer -= 24;
}
////////////////////
// pixel 6 unpack
{
// alpha factor
float alpha2_f = range_table[color_diff[2]];
float alpha1_f = range_table[color_diff[2 + 8]];
__m256 alpha_f_8x = _mm256_set_ps(alpha1_f, alpha1_f, alpha1_f, alpha1_f,
alpha2_f, alpha2_f, alpha2_f, alpha2_f);
_mm256_store_ps(line_buffer, alpha_f_8x); // cache weights
// source pixel
pix8 = _mm256_slli_si256(pix8, 4); // shift left to unpack next pixel
__m256i pix2i = _mm256_shuffle_epi8(pix8, mask_unpack); // extracts 1 pixel components from BYTE to DWORD
__m256 pix2f = _mm256_cvtepi32_ps(pix2i); // convert to floats
pix2f = _mm256_mul_ps(pix2f, inv_alpha); // pre-multiply source color
_mm256_store_ps(line_buffer + 8, pix2f);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
_mm256_store_ps(line_buffer + 16, out_color); // cache final color
line_buffer -= 24;
}
////////////////////
// pixel 7 unpack
{
// alpha factor
float alpha2_f = range_table[color_diff[1]];
float alpha1_f = range_table[color_diff[1 + 8]];
__m256 alpha_f_8x = _mm256_set_ps(alpha1_f, alpha1_f, alpha1_f, alpha1_f,
alpha2_f, alpha2_f, alpha2_f, alpha2_f);
_mm256_store_ps(line_buffer, alpha_f_8x); // cache weights
// source pixel
pix8 = _mm256_slli_si256(pix8, 4); // shift left to unpack next pixel
__m256i pix2i = _mm256_shuffle_epi8(pix8, mask_unpack); // extracts 1 pixel components from BYTE to DWORD
__m256 pix2f = _mm256_cvtepi32_ps(pix2i); // convert to floats
pix2f = _mm256_mul_ps(pix2f, inv_alpha); // pre-multiply source color
_mm256_store_ps(line_buffer + 8, pix2f);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
_mm256_store_ps(line_buffer + 16, out_color); // cache final color
line_buffer -= 24;
}
////////////////////
// pixel 8 unpack
{
// alpha factor
float alpha2_f = range_table[color_diff[0]];
float alpha1_f = range_table[color_diff[0 + 8]];
__m256 alpha_f_8x = _mm256_set_ps(alpha1_f, alpha1_f, alpha1_f, alpha1_f,
alpha2_f, alpha2_f, alpha2_f, alpha2_f);
_mm256_store_ps(line_buffer, alpha_f_8x); // cache weights
// source pixel
pix8 = _mm256_slli_si256(pix8, 4); // shift left to unpack next pixel
__m256i pix2i = _mm256_shuffle_epi8(pix8, mask_unpack); // extracts 1 pixel components from BYTE to DWORD
__m256 pix2f = _mm256_cvtepi32_ps(pix2i); // convert to floats
pix2f = _mm256_mul_ps(pix2f, inv_alpha); // pre-multiply source color
_mm256_store_ps(line_buffer + 8, pix2f);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
_mm256_store_ps(line_buffer + 16, out_color); // cache final color
line_buffer -= 24;
}
}
/////////////////////////////
// left to right pass
__m256i* dst1_pix8 = (__m256i*)(img_dst + y * pitch);
__m256i* dst2_pix8 = (__m256i*)(img_dst + (y + 1) * pitch);
for (int x = 0; x < width32; x++)
{
__m256i result1;
__m256i result2;
/////////////
// 1st 4 pixels
// pixel 1
{
// alpha
__m256 alpha_f_8x = _mm256_load_ps(line_buffer);
line_buffer += 24;
// get pre-multiplied source color
__m256 pix2f = _mm256_load_ps(line_buffer + 8);
// first pixel in line needs to initialize color_prev to original source color
if (x == 0)
color_prev = _mm256_div_ps(pix2f, inv_alpha); // source color was premultiplied
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
// get final color from previous pass
__m256 pix2f_p = _mm256_load_ps(line_buffer + 16);
out_color = _mm256_add_ps(out_color, pix2f_p); // combine it with current final color
__m256i pix2i = _mm256_cvtps_epi32(out_color); // covert to integer
pix2i = _mm256_srli_epi32(pix2i, 1); // division by 2
// pack result
result1 = _mm256_shuffle_epi8(pix2i, mask_pack);
}
// pixel 2
{
// alpha
__m256 alpha_f_8x = _mm256_load_ps(line_buffer);
line_buffer += 24;
// get pre-multiplied source color
__m256 pix2f = _mm256_load_ps(line_buffer + 8);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
// get final color from previous pass
__m256 pix2f_p = _mm256_load_ps(line_buffer + 16);
out_color = _mm256_add_ps(out_color, pix2f_p); // combine it with current final color
__m256i pix2i = _mm256_cvtps_epi32(out_color); // covert to integer
pix2i = _mm256_srli_epi32(pix2i, 1); // division by 2
// pack result
pix2i = _mm256_shuffle_epi8(pix2i, mask_pack);
result1 = _mm256_srli_si256(result1, 4); // shift
result1 = _mm256_or_si256(result1, pix2i); // combine
}
// pixel 3
{
// alpha
__m256 alpha_f_8x = _mm256_load_ps(line_buffer);
line_buffer += 24;
// get pre-multiplied source color
__m256 pix2f = _mm256_load_ps(line_buffer + 8);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
// get final color from previous pass
__m256 pix2f_p = _mm256_load_ps(line_buffer + 16);
out_color = _mm256_add_ps(out_color, pix2f_p); // combine it with current final color
__m256i pix2i = _mm256_cvtps_epi32(out_color); // covert to integer
pix2i = _mm256_srli_epi32(pix2i, 1); // division by 2
// pack result
pix2i = _mm256_shuffle_epi8(pix2i, mask_pack);
result1 = _mm256_srli_si256(result1, 4); // shift
result1 = _mm256_or_si256(result1, pix2i); // combine
}
// pixel 4
{
// alpha
__m256 alpha_f_8x = _mm256_load_ps(line_buffer);
line_buffer += 24;
// get pre-multiplied source color
__m256 pix2f = _mm256_load_ps(line_buffer + 8);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
// get final color from previous pass
__m256 pix2f_p = _mm256_load_ps(line_buffer + 16);
out_color = _mm256_add_ps(out_color, pix2f_p); // combine it with current final color
__m256i pix2i = _mm256_cvtps_epi32(out_color); // covert to integer
pix2i = _mm256_srli_epi32(pix2i, 1); // division by 2
// pack result
pix2i = _mm256_shuffle_epi8(pix2i, mask_pack);
result1 = _mm256_srli_si256(result1, 4); // shift
result1 = _mm256_or_si256(result1, pix2i); // combine
}
// next 4 pixels packed in result2
// pixel 5
{
// alpha
__m256 alpha_f_8x = _mm256_load_ps(line_buffer);
line_buffer += 24;
// get pre-multiplied source color
__m256 pix2f = _mm256_load_ps(line_buffer + 8);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
// get final color from previous pass
__m256 pix2f_p = _mm256_load_ps(line_buffer + 16);
out_color = _mm256_add_ps(out_color, pix2f_p); // combine it with current final color
__m256i pix2i = _mm256_cvtps_epi32(out_color); // covert to integer
pix2i = _mm256_srli_epi32(pix2i, 1); // division by 2
// pack result
result2 = _mm256_shuffle_epi8(pix2i, mask_pack);
}
// pixel 6
{
// alpha
__m256 alpha_f_8x = _mm256_load_ps(line_buffer);
line_buffer += 24;
// get pre-multiplied source color
__m256 pix2f = _mm256_load_ps(line_buffer + 8);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
// get final color from previous pass
__m256 pix2f_p = _mm256_load_ps(line_buffer + 16);
out_color = _mm256_add_ps(out_color, pix2f_p); // combine it with current final color
__m256i pix2i = _mm256_cvtps_epi32(out_color); // covert to integer
pix2i = _mm256_srli_epi32(pix2i, 1); // division by 2
// pack result
pix2i = _mm256_shuffle_epi8(pix2i, mask_pack);
result2 = _mm256_srli_si256(result2, 4); // shift
result2 = _mm256_or_si256(result2, pix2i); // combine
}
// pixel 7
{
// alpha
__m256 alpha_f_8x = _mm256_load_ps(line_buffer);
line_buffer += 24;
// get pre-multiplied source color
__m256 pix2f = _mm256_load_ps(line_buffer + 8);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
// get final color from previous pass
__m256 pix2f_p = _mm256_load_ps(line_buffer + 16);
out_color = _mm256_add_ps(out_color, pix2f_p); // combine it with current final color
__m256i pix2i = _mm256_cvtps_epi32(out_color); // covert to integer
pix2i = _mm256_srli_epi32(pix2i, 1); // division by 2
// pack result
pix2i = _mm256_shuffle_epi8(pix2i, mask_pack);
result2 = _mm256_srli_si256(result2, 4); // shift
result2 = _mm256_or_si256(result2, pix2i); // combine
}
// pixel 8
{
// alpha
__m256 alpha_f_8x = _mm256_load_ps(line_buffer);
line_buffer += 24;
// get pre-multiplied source color
__m256 pix2f = _mm256_load_ps(line_buffer + 8);
// filter
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// final color
__m256 out_color = _mm256_div_ps(color_prev, alpha_prev); // get final color
// get final color from previous pass
__m256 pix2f_p = _mm256_load_ps(line_buffer + 16);
out_color = _mm256_add_ps(out_color, pix2f_p); // combine it with current final color
__m256i pix2i = _mm256_cvtps_epi32(out_color); // covert to integer
pix2i = _mm256_srli_epi32(pix2i, 1); // division by 2
// pack result
pix2i = _mm256_shuffle_epi8(pix2i, mask_pack);
result2 = _mm256_srli_si256(result2, 4); // shift
result2 = _mm256_or_si256(result2, pix2i); // combine
}
// separate packed results into lines
__m256i line1 = _mm256_permute2f128_si256(result1, result2, 2 << 4);
__m256i line2 = _mm256_permute2f128_si256(result1, result2, 1 | (3 << 4));
// store result
_mm256_store_si256(dst1_pix8++, line1);
_mm256_store_si256(dst2_pix8++, line2);
}
}
}
void CRBFilterAVX2::verticalFilter(int thread_index, const unsigned char* img_src, unsigned char* img_dst, int width, int height, int pitch)
{
int width_segment = width / m_thread_count;
// make sure width segments round to 32 byte boundary
width_segment -= width_segment % 8;
int start_offset = width_segment * thread_index;
if (thread_index == m_thread_count - 1) // last one
{
width_segment = getOptimalPitch(width) / 4 - start_offset;
}
int width8 = width_segment / 8;
// adjust img buffer starting positions
img_src += start_offset * 4;
img_dst += start_offset * 4;
float* line_cache = m_v_line_cache[thread_index];
const float* range_table = m_range_table;
_mm256_zeroall();
__m256 inv_alpha = _mm256_set1_ps(m_inv_alpha_f);
__m256i mask_pack = _mm256_setr_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 4, 8, 12, // pixel 1
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 4, 8, 12); // pixel 2
__m256i mask_unpack = _mm256_setr_epi8(0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, // pixel 1
0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1); // pixel 2
// used to store maximum difference between 2 pixels
__declspec(align(32)) long color_diff[8];
/////////////////
// Bottom to top pass first
{
// last line processed separately since no previous
{
float* line_buffer = line_cache;
__m256i* dst_buf = (__m256i*)(img_dst + (height - 1) * pitch);
__m256i* src_8xCur = (__m256i*)(img_src + (height - 1) * pitch);
__m256 one = _mm256_set1_ps(1.f);
for (int x = 0; x < width8; x++)
{
__m256i pix8 = _mm256_load_si256(src_8xCur++); // load 8x pixel
_mm256_store_si256(dst_buf++, pix8); // copy to destination
for (int i = 0; i < 4; i++)
{
__m256i pix2i = _mm256_shuffle_epi8(pix8, mask_unpack);
pix8 = _mm256_srli_si256(pix8, 4); // shift right
__m256 pix2f = _mm256_cvtepi32_ps(pix2i); // convert to floats
_mm256_store_ps(line_buffer, one);
_mm256_store_ps(line_buffer + 8, pix2f);
line_buffer += 16;
}
}
}
// process other lines
for (int y = height - 2; y >= 0; y--)
{
float* line_buffer = line_cache;
__m256i* dst_buf = (__m256i*)(img_dst + y * pitch);
__m256i* src_8xCur = (__m256i*)(img_src + y * pitch);
__m256i* src_8xPrev = (__m256i*)(img_src + (y + 1) * pitch);
for (int x = 0; x < width8; x++)
{
__m256i pix8 = _mm256_load_si256(src_8xCur++); // load 8x pixel
__m256i pix8p = _mm256_load_si256(src_8xPrev++);
__m256i pix_out; // final 8x packed pixels
// get color differences
getDiffFactor3x(pix8, pix8p, (__m256i*)color_diff);
////////////////////
// pixel 1, 5 unpack
{
// alpha factor
float alpha2_f = range_table[color_diff[0]];
float alpha1_f = range_table[color_diff[4]];
__m256 alpha_f_8x = _mm256_set_ps(alpha1_f, alpha1_f, alpha1_f, alpha1_f,
alpha2_f, alpha2_f, alpha2_f, alpha2_f);
// load previous line color factor
__m256 alpha_prev = _mm256_load_ps(line_buffer);
// load previous line color
__m256 color_prev = _mm256_load_ps(line_buffer + 8);
// unpack current source pixel
__m256i pix2i = _mm256_shuffle_epi8(pix8, mask_unpack);
__m256 pix2f = _mm256_cvtepi32_ps(pix2i); // convert to floats
// filter
pix2f = _mm256_mul_ps(pix2f, inv_alpha);
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// store current factor and color as previous for next cycle
_mm256_store_ps(line_buffer, alpha_prev);
_mm256_store_ps(line_buffer + 8, color_prev);
line_buffer += 16;
// calculate final color
pix2f = _mm256_div_ps(color_prev, alpha_prev);
// pack float pixel into byte pixel
pix2i = _mm256_cvtps_epi32(pix2f); // convert to integer
pix_out = _mm256_shuffle_epi8(pix2i, mask_pack);
}
// loop for other pixels
for(int i=1; i<4; i++)
{
// alpha factor
float alpha2_f = range_table[color_diff[i]];
float alpha1_f = range_table[color_diff[i+4]];
__m256 alpha_f_8x = _mm256_set_ps(alpha1_f, alpha1_f, alpha1_f, alpha1_f,
alpha2_f, alpha2_f, alpha2_f, alpha2_f);
// load previous line color factor
__m256 alpha_prev = _mm256_load_ps(line_buffer);
// load previous line color
__m256 color_prev = _mm256_load_ps(line_buffer + 8);
// unpack current source pixel
pix8 = _mm256_srli_si256(pix8, 4); // shift right
__m256i pix2i = _mm256_shuffle_epi8(pix8, mask_unpack);
__m256 pix2f = _mm256_cvtepi32_ps(pix2i); // convert to floats
// filter
pix2f = _mm256_mul_ps(pix2f, inv_alpha);
alpha_prev = _mm256_fmadd_ps(alpha_prev, alpha_f_8x, inv_alpha); // filter factor
color_prev = _mm256_fmadd_ps(color_prev, alpha_f_8x, pix2f); // filter color
// store current factor and color as previous for next cycle
_mm256_store_ps(line_buffer, alpha_prev);
_mm256_store_ps(line_buffer + 8, color_prev);
line_buffer += 16;
// calculate final color
pix2f = _mm256_div_ps(color_prev, alpha_prev);
// pack float pixel into byte pixel
pix2i = _mm256_cvtps_epi32(pix2f); // convert to integer
pix2i = _mm256_shuffle_epi8(pix2i, mask_pack);
pix_out = _mm256_srli_si256(pix_out, 4); // shift
pix_out = _mm256_or_si256(pix_out, pix2i); // combine
}
// store result
_mm256_store_si256(dst_buf++, pix_out);
}
}
}
/////////////////
// Top to bottom pass last
{
// first line processed separately since no previous
{
float* line_buffer = line_cache;
__m256i* dst_line = (__m256i*)img_dst;
__m256i* src_8xCur = (__m256i*)img_src;
__m256 one = _mm256_set1_ps(1.f);
for (int x = 0; x < width8; x++)
{
__m256i pix8 = _mm256_load_si256(src_8xCur++); // load 8x pixel
__m256i pix8_d = _mm256_load_si256(dst_line);
pix8_d = _mm256_avg_epu8(pix8_d, pix8); // average out
_mm256_store_si256(dst_line++, pix8_d);
for (int i = 0; i < 4; i++)
{
__m256i pix2i = _mm256_shuffle_epi8(pix8, mask_unpack);
pix8 = _mm256_srli_si256(pix8, 4); // shift right
__m256 pix2f = _mm256_cvtepi32_ps(pix2i); // convert to floats
_mm256_store_ps(line_buffer, one);
_mm256_store_ps(line_buffer + 8, pix2f);
line_buffer += 16;
}
}
}
// process other lines
for (int y = 1; y < height; y++)
{
float* line_buffer = line_cache;
__m256i* dst_buf = (__m256i*)(img_dst + y * pitch);
__m256i* src_8xCur = (__m256i*)(img_src + y * pitch);
__m256i* src_8xPrev = (__m256i*)(img_src + (y - 1) * pitch);
for (int x = 0; x < width8; x++)
{
__m256i pix8 = _mm256_load_si256(src_8xCur++); // load 8x pixel
__m256i pix8p = _mm256_load_si256(src_8xPrev++);