-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02_ptm_post_processing.R
515 lines (375 loc) · 16.9 KB
/
02_ptm_post_processing.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# spjaðing av bitlum, parallel koyring
# fyrst verður kannað um neyðugu r pakkar eru installeraðir
source("scripts/required_r_packages.R", encoding = "utf-8")
# hvat skal koyrast?
# particlar í gjøgnum kræklingaalingabrúk?
kraklingar <- TRUE
# particle deposition frá laksaaling?
laksur <- TRUE
images <- TRUE
depositionplot_per_m <- 1
# skulu geodátur heintast av gitlab?
# bert neyðugt fyrstu ferð
geodata <- FALSE
# hvar liggja distribution files
folderpath <- ""
filetypes <- "csv"
# skal tú bara testa? um ikki so set testdrops = NA
testdrops <- NA
# hvussu nógvar cores
ncores <- 40
# neyðugar upplýsingar ----------------------------------------------------
# hvør/hvørjar søkkiferðir skal koyrast, vel "01", "15", "32" ella "75" (string)
ferdir <- c("01", "15", "32", "75")
byti <- c(0.05, 0.1, 0.2, 0.65)
# hvussu nógvar bins eru? (numeric)
allar <- c(2399, 2399, 2399, 2399)
# hvussu nógvir metrar eru millum hvørja bin í spjaðingsmodellinum?
bin_m <- 0.01
# hvussu nógvir metrar svarar bin0 til í spjaðingsmodellinum?
binstart_m <- 5 + bin_m
# hvussu stórt skal hvørt grid verða inni í ringunum (m)?
# bitlar verða sleptir úr miðuni á hvørjari grid box
ringargrid <- 4
# hvussu stórur skal buffarin veðra rundan um ringarnar (m) ?
# hetta verður nýtt til boundary boxina, ið verður uppsett
boundarybuffer <- 150
# hvussu stórt skal hvørt grid verða inni í boundary (m)?
# hetta verður nýtt til uppteljing av bitlunum í økinum
boundarygrid <- 1
# hvussu nógvar gradir eru alieindirnar roteraðar?
# hetta veit man frá tá ramman varð teknað í "scripts/geosetup.R"
rotang <- 7
# hvussu eita "directions" í dátugrunninum?
x <- "u"
y <- "v"
# upplýsingar um kræklingaalingabrúkini
## kræklingaalibrúk nr. 1 (við síðurnar av alibrúkinum)
krak_navn1 <- "1"
from_meters1 <- 0
to_meters1 <- 10
## kræklingaalibrúk nr. 2 (undir alibrúkinum)
krak_navn2 <- "2"
from_meters2 <- 18
to_meters2 <- 28
# Speedfactor
speedfactor <- seq(0.1,4,0.1)
#speedfactor <- c(1.0)
speedfactor_text <- sprintf("%.2f", speedfactor)
# R packages --------------------------------------------------------------
library(tidyverse)
library(sf)
library(parallel)
library(foreach)
library(doParallel)
# create directories ------------------------------------------------------
dir.create("data/processed", showWarnings = FALSE)
# source scripts ----------------------------------------------------------
if(geodata == TRUE){
source("scripts/get_geodata.R", encoding = "utf-8")
source("scripts/initial_import_geodata.R", encoding = "utf-8")
}
# her verða ringar og møgulig kraklingaaliøki sett upp!
# hetta riggar ikki á ubuntu í løtuni :( [notat::2022-07-12]
#source("scripts/geosetup.R")
# source functions --------------------------------------------------------
source("scripts/functions_post_processing.R")
# koyring fyri hvørja søkkiferð -------------------------------------------
for(v in 1:length(ferdir)) {
ferd <- ferdir[v]
maxbin <- allar[v]
binlength <- bin_m
# create directories ------------------------------------------------------
dir.create(paste0("data/processed/ferd", ferd), showWarnings = FALSE)
dir.create(paste0("data/processed/summaries"), showWarnings = FALSE)
if (kraklingar == TRUE){
dir.create(paste0("data/processed/ferd", ferd, "/particles"), showWarnings = FALSE)
}
# uppset gridd í aliringunum ----------------------------------------------
uppset_grid_ringar(ringargrid)
# import data -------------------------------------------------------------
# kræklingaaliøki 1
krak1 <- read_rds("data/processed/alibruk1.rds")
# kræklingaaliøki 1
krak2 <- read_rds("data/processed/alibruk2.rds")
# aliringar
ringar <- read_rds("data/processed/ringar.rds")
ringgrid <- read_rds(paste0("data/processed/ring_grid_", ringargrid, ".rds")) %>%
select(geometry)
dfgrid <- read_rds(paste0("data/processed/dfgridring_", ringargrid, ".rds"))
# boundary box verður sett upp her ----------------------------------------
# boundary box um ringarnar
grid <- st_bbox(ringgrid)
grid[3] <- round(grid$xmax + boundarybuffer, 0)
grid[4] <- round(grid$ymax + boundarybuffer, 0)
grid[1] <- round(grid$xmin - boundarybuffer, 0)
grid[2] <- round(grid$ymin - boundarybuffer, 0)
xlength <- grid[[3]]-grid[[1]]
ylength <- grid[[4]]-grid[[2]]
# syrgja fyri at boundary box er kvadradisk
if(xlength > ylength){
grid[4] <- grid$ymax + (xlength - ylength)/2
grid[2] <- grid$ymin - (xlength - ylength)/2
ylength <- grid[[4]]-grid[[2]]
}
if(ylength > xlength){
grid[3] <- grid$xmax + (ylength - xlength)/2
grid[1] <- grid$xmin - (ylength - xlength)/2
xlength <- grid[[3]]-grid[[1]]
}
# hvussu nógv grids eru á hvørjari síðu?
grids <- xlength/boundarygrid
# Plot við ringunum og tí uppsettu boundary boxini ------------------------
info1 <- paste0("søkkiferð = ", as.numeric(ferd)/10, " cm/s \n",
"grid stødd í ringunum = ", ringargrid, " x ", ringargrid, " m2 \n",
"boundary box = ", grids*boundarygrid, " x ", grids*boundarygrid, " m2 \n",
"grid stødd í boundary box = ", boundarygrid, " x ", boundarygrid, " m2 \n")
ggplot() +
geom_sf(data = ringar) +
geom_sf(data = ringgrid) +
geom_sf(data = krak1, fill = NA) +
geom_sf(data = krak2, fill = NA) +
geom_sf(data = grid %>% st_as_sfc(), fill = NA) +
geom_text(aes(label = info1, x = grid$xmin+(boundarygrid*8), y = grid$ymax),
hjust = 0, vjust = 1.1, size = 3) +
theme_minimal() +
theme(axis.title = element_blank(),
axis.text = element_text(size = 6))
ggsave(paste0("data/processed/ferd",ferd, "/ferd_", ferd, ".png"), width = 5, height = 5)
# bitlar inni í kræklingaaliøki -------------------------------------------
if(kraklingar == TRUE) {
# import data -------------------------------------------------------------
if(filetypes == "csv") {
df <- read_csv(paste0(folderpath, "out_0.0", ferd, ".csv"), col_types = cols(col_double()))
} else {
df <- read_rds(paste0(folderpath, "out00", ferd, ".rds"))
}
# Rotate ------------------------------------------------------------------
# Alt verður roterað, gradir = rotang um 0,0
# rotera koordinatar á sleppingini
dfgrid_rot <- dfgrid %>%
mutate(x1 = xrot(x = x, y = y, rotang = rotang, xc = 0, yc = 0),
y1 = yrot(x = x, y = y, rotang = rotang, xc = 0, yc = 0))
# Rotera kræklingaalibrúkini
krak1_rot <- krak1 %>%
st_cast("POINT") %>%
mutate(!!x := unlist(map(geometry,1)),
!!y := unlist(map(geometry,2))) %>%
data.frame() %>%
select(-geometry) %>%
mutate(x1 = xrot(x = u, y = v, rotang = rotang, xc = 0, yc = 0),
y1 = yrot(x = u, y = v, rotang = rotang, xc = 0, yc = 0))
krak2_rot <- krak2 %>%
st_cast("POINT") %>%
mutate(!!x := unlist(map(geometry,1)),
!!y := unlist(map(geometry,2))) %>%
data.frame() %>%
select(-geometry) %>%
mutate(x1 = xrot(x = u, y = v, rotang = rotang, xc = 0, yc = 0),
y1 = yrot(x = u, y = v, rotang = rotang, xc = 0, yc = 0))
# Rotera partiklar
#df_rot <- dfrotation(df, maxbin, rotang)
doParallel::registerDoParallel(max(detectCores()-20, detectCores()-1))
df_rot <- foreach (i=0:maxbin, .combine = cbind
) %dopar% {
dfrotation_parallel(df = df, i = i, rotang = rotang)
}
df_rot <- bind_cols(df[1], df_rot)
stopImplicitCluster()
rm(df)
gc()
# parallelisering av functiónini particles_kraklingaaling
# kræklingaliøki nr. 1, liggur sum standard á 0 - 10 m dýpi
# prepare data
bintometer <- data.frame(bin = 0:maxbin,
m = 0:maxbin*binlength)
binfrom = round((from_meters1 - binstart_m)/binlength)
binto = round((to_meters1 - binstart_m)/binlength)
# summerize over specified bins
if(binto >= 0) {
if(binto == 0) {
binfrom <- 0
bins_to_summarise <- c(paste0(0, x), paste0(0, y))
} else {
if(binfrom < 0) {binfrom <- 0}
if(binto > maxbin) {binto <- maxbin}
if(binfrom == 0) {binto <- binto - 1}
bins_to_summarise <- c(paste0(binfrom:binto, x), paste0(binfrom:binto, y))
}
#filter dataframe
data <- df_rot %>%
select(starttid, all_of(bins_to_summarise))
# Detect the number of available cores and create cluster
cl <- parallel::makeCluster(min(detectCores()-1, ncores))
# Activate cluster for foreach library
doParallel::registerDoParallel(cl)
foreach (i=1:min(nrow(dfgrid),testdrops, na.rm = TRUE),
.packages = c("dplyr", "readr")
) %dopar% {
particles_kraklingaaling(data = data,
ringdrop = i,
ferd = ferd,
krak_alioki_rotated = krak1_rot,
krak_navn = krak_navn1,
dfgrid_rotated = dfgrid_rot,
maxbin = maxbin,
x = x,
y = y,
binfrom = binfrom,
binto = binto,
binlength = binlength,
sensitivity = speedfactor)
}
}
# kræklingaliøki nr. 2, liggur sum standard á 18 - 28 m dýpi
# prepare data
binfrom = round((from_meters2 - binstart_m)/binlength)
binto = round((to_meters2 - binstart_m)/binlength)
# summerize over specified bins
if(binfrom < 0) {binfrom <- 0}
if(binto > maxbin) {binto <- maxbin}
if(binfrom == 0) {binto <- binto - 1}
bins_to_summarise <- c(paste0(binfrom:binto, x), paste0(binfrom:binto, y))
if(binfrom < maxbin) {
#filter dataframe
data <- df_rot %>%
select(starttid, all_of(bins_to_summarise))
foreach (i=1:min(nrow(dfgrid),testdrops, na.rm = TRUE),
.packages = c("dplyr", "readr")
) %dopar% {
particles_kraklingaaling(data = data,
ringdrop = i,
ferd = ferd,
krak_alioki_rotated = krak2_rot,
krak_navn = krak_navn2,
dfgrid_rotated = dfgrid_rot,
maxbin = maxbin,
x = x,
y = y,
binfrom = binfrom,
binto = binto,
binlength = binlength,
sensitivity = speedfactor)
}
}
parallel::stopCluster(cl)
# summary av partiklum, ið fara í gjøgnum kræklinaalingabrúkini, í einari ávísari dýbd
# kræklingaliøki nr. 1
summary_kraklinga_particles(ferd = ferd,
krak_navn = krak_navn1,
number_ringdrops = min(nrow(dfgrid),testdrops, na.rm = TRUE),
number_particles_in_drop = nrow(df),
deep = to_meters1 - max(from_meters1, binstart_m),
binlength = binlength,
sensitivity = speedfactor_text
)
if(binfrom < maxbin) {
# kræklingaliøki nr. 2
summary_kraklinga_particles(ferd = ferd,
krak_navn = krak_navn2,
number_ringdrops = min(nrow(dfgrid),testdrops, na.rm = TRUE),
number_particles_in_drop = nrow(df),
deep = to_meters2 - max(from_meters2, binstart_m),
binlength = binlength,
sensitivity = speedfactor_text
)
}
}
# particle deposition frá laksaaling --------------------------------------
if(laksur == TRUE) {
depositionplot_per_m <- max(depositionplot_per_m, bin_m)
# import data -------------------------------------------------------------
if(filetypes == "csv") {
df <- read_csv(paste0(folderpath, "out_0.0", ferd, ".csv"))
} else {
df <- read_rds(paste0(folderpath, "out00", ferd, ".rds"))
}
binsmeters <- data.frame(bin = c(0:maxbin)) %>%
mutate(meters = binstart_m+bin_m*bin) %>%
filter(meters %in% c(seq(ceiling(binstart_m), max(meters), depositionplot_per_m))) %>%
.$bin
# Detect the number of available cores and create cluster
cl <- parallel::makeCluster(min(ncores, length(binsmeters)))
# Activate cluster for foreach library
doParallel::registerDoParallel(cl)
# parallelisering av functiónini particles_deposition
foreach(i = 1:length(binsmeters),
.packages = c("tidyverse", "sf")) %dopar% {
particle_deposition(binno = binsmeters[i],
data = df,
dfgrid = dfgrid,
ferd = ferd,
boundarybox = grid,
boundarygrid = boundarygrid,
x = x,
y = y)
}
# Stop cluster to free up resources
parallel::stopCluster(cl)
}
}
# plot distributions in depth ---------------------------------------------
if(images == TRUE){
maxbin <- max(allar)
depositionplot_per_m <- max(depositionplot_per_m, bin_m)
binsmeters <- data.frame(bin = c(0:maxbin)) %>%
mutate(meters = binstart_m+bin_m*bin) %>%
filter(meters %in% c(binstart_m, seq(ceiling(binstart_m), max(meters), depositionplot_per_m))) %>%
.$bin
# stitch all the bins together
stitch_bins(speed = ferdir, binstoplot = binsmeters)
# stitch all the summary bins together
stitch_summary(speed = ferdir, binstoplot = binsmeters)
# samla particle depositions fyri hvørja ferð við tí uppgivna býtinum
pdms_speeds_proportions(ferdir = ferdir,
byti = byti)
df_speeds_combined <- read_rds(paste0("data/processed/summaries/bins_particle_deposition_speeds_",
paste0(ferdir, "at", str_remove_all(byti, "\\."), collapse = "_"),
".rds")) %>%
filter(bin %in% binsmeters)
dir.create("images/density_plots", showWarnings = FALSE, recursive = TRUE)
dir.create("images/gifs", showWarnings = FALSE)
ringar <- read_rds("data/processed/ringar.rds")
krak1 <- read_rds("data/processed/alibruk1.rds")
krak2 <- read_rds("data/processed/alibruk2.rds")
cl <- parallel::makeCluster(min(detectCores()-80, length(binsmeters)))
doParallel::registerDoParallel(cl)
# parallelisering av functiónini plot_pdms
foreach(i = 1:length(binsmeters),
.packages = c("tidyverse", "sf")) %dopar% {
plot_pdms(binno = binsmeters[i],
data = df_speeds_combined %>% filter(bin == binsmeters[i]),
bin_m = bin_m,
binstart_m = binstart_m,
scale_min = min(df_speeds_combined$dens_byti),
scale_max = max(df_speeds_combined$dens_byti),
breaks = 15,
show_kde = FALSE,
sf_aliringar = ringar,
sf_krak1 = krak1,
from_meters1 = from_meters1,
to_meters1 = to_meters1,
sf_krak2 = krak2,
from_meters2 = from_meters2,
to_meters2 = to_meters2,
ferdir = ferdir,
byti = byti)
}
# Stop cluster to free up resources
parallel::stopCluster(cl)
# create gif
## list file names
imgs <- gtools::mixedsort(list.files(path = "images/density_plots/",
pattern = paste0(".*",
paste0(ferdir, "at", str_remove_all(byti, "\\."), collapse = "_"),
".*.png"),
full.names = TRUE))
## create animation
gifski::gifski(png_files = imgs,
gif_file = paste0("images/gifs/particle_deposition_speeds_combined_",
paste0(ferdir, "at", str_remove_all(byti, "\\."), collapse = "_"),
".gif"),
delay = 0.4, width = 500, height = 500)
}
#rm(list = ls())
gc()