forked from JTzzang/Trace_Prediction
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredictadd.py
247 lines (225 loc) · 7.52 KB
/
predictadd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# -*- coding: utf-8 -*-
"""test+dahab
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1A94BHfyPA7c-8MjyRMU5Up5V6dwdLbFb
"""
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
with open('/content/drive/My Drive/data.txt', 'r') as f:
lines = f.readlines()
print(len(lines))
f.close()
import numpy as np
import torch
import random
from torch.utils.data import TensorDataset, DataLoader
x=[]
y=[]
xarr=[]
yarr=[]
validxarr=[]
validyarr=[]
testxarr=[]
testyarr=[]
seq_size=100
seq_num=1000
for i in range(0,len(lines)):
lines[i]=lines[i].rstrip()
lines[i]=int(lines[i])
lines[i]=lines[i]%1000
#lines=np.hstack((indexarr, lines))
#m=random.randrange(30000000,50000000)
#n= random.randrange(30000000,50000000)
#o= random.randrange(30000000,50000000)
m=40000000
n=40000500
o=40001000
print("m, n, o", m,n,o)
'''
while (m==n):
n= random.randrange(40000000,60000000)
while (o==n) or (o==m):
o= random.randrange(40000000,60000000)
'''
for i in range(0,seq_num):
x=lines[m:m+seq_size]
xarr.append(x)
m=m+int(seq_size/2)
y=lines[m:m+seq_size]
yarr.append(y)
m=m+int(seq_size/2)
'''
for j in range(0,20):
x=lines[n:n+1000]
validxarr.append(x)
n=n+500
y=lines[n:n+1000]
validyarr.append(y)
n=n+500
for k in range(0,20):
x=lines[o:o+1000]
testxarr.append(x)
o=o+500
y=lines[o:o+1000]
testyarr.append(y)
o=o+500
'''
tensor_x=torch.LongTensor(xarr)#.cuda()
tensor_y=torch.LongTensor(yarr)#.cuda()
dataset=TensorDataset(tensor_x,tensor_y)
train_loader = DataLoader(dataset, batch_size=1)
#or i in train_loader:
#print(i)
'''
for data in train_loader:
print(len(data))
print("x", data[0])
print("y", data[1])
'''
'''
valid_tensor_x=torch.Tensor(validxarr).long()
valid_tensor_y=torch.Tensor(validyarr).long()
valid_dataset=TensorDataset(valid_tensor_x,valid_tensor_y)
valid_loader = DataLoader(valid_dataset, batch_size=1)
test_tensor_x=torch.Tensor(testxarr).long()
test_tensor_y=torch.Tensor(testyarr).long()
test_dataset=TensorDataset(test_tensor_x,test_tensor_y)
test_loader = DataLoader(test_dataset, batch_size=1)'''
#LSTM Model
import torch.nn as nn
from torch import autograd
from torch.nn.utils.rnn import pad_sequence, pack_sequence, pack_padded_sequence, pad_packed_sequence
batch_size=1
num_layers=1
input_size=1000
hidden_size=2048
output_size=seq_size
class Model(nn.Module):
def __init__(self):
super(Model,self).__init__()
self.embedding=nn.Embedding(input_size,hidden_size)
self.rnn = nn.RNN(hidden_size, hidden_size, nonlinearity='tanh')
def forward(self,x):
x=x.permute(1,0)
self.embedding.zero_grad()
embedded=self.embedding(x)
state = autograd.Variable(torch.zeros(1, batch_size, hidden_size)).to(device)
#print("state size:",state.size())
out, state = self.rnn(embedded, state)
#print("out data size:", out.data.shape)
#print("h_n size:", h_n.size())
#lstm_out, _ = pad_packed_sequence(packed_output)
#print("lstm_out size: ", lstm_out.size())
out_unembedded= out.view(-1, hidden_size) @ self.embedding.weight.transpose(0,1)
_, pred= out_unembedded.max(1)
#out=self.fc(lstm_out)
#print("out size: ", out.size())
#print("out[0] before softmax:",out)
#print("in model final-1 output size: ",out.size())
#print("out[0] after softmax:",out)
#print("final out size: ", out.size())
#print("in model final output size: ",out.size())
return out_unembedded, pred
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
#print("This model is running on" , torch.cuda.get_device_name())
#Model
net=Model().to(device)
print(net)
#parameters=[p for p in net.parameters()]+[p for p in embedding.parameters()]
#Get adjustable parameters(weights) and optimize them
#parameters=[p for p in net.parameters()]+[p for p in embedding.parameters()]
optimizer=torch.optim.Adam(net.parameters(),lr=0.00005,weight_decay=0.0001) #weight decay is multiplied co weight to prevent them from growing too large
#Error Function
criterion = torch.nn.functional.nll_loss
# Learning rate scheduler: adjusts learning rate as the epoch increases
exp_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) #Decays the learning rate by multiplyin by gamma every step_size epochs
#How many times we pass our full data (the same data)
total_epoch=50000
#Training and Validation
best_valid_acc=0
checkarr=[]
checkarrcheck=0
accarr=[]
net.train()
for i in range(seq_num):#same with batch num
checkarr.append(0)
accarr.append(0)
for cur_epoch in range(total_epoch):
for p,data in enumerate(train_loader):
X,y=data[0].to(device), data[1].to(device)
output, pred=net(X)
check=0
loss = criterion(output, y.view(-1))
darr=[]
for i in range(seq_size):#same with batch size
if pred[i]==y.view(-1)[i]:
check=1
else:
darr.append(i)
accarr[p]=seq_size-len(darr)
#print("different:",darr)
#print("batch",p)
#if cur_epoch % 100==0:
#print("len of different",len(darr))
optimizer.zero_grad()
net.zero_grad()
loss.backward()
optimizer.step()
#exp_lr_scheduler.step()
#train_total +=1
if (cur_epoch % 10==0 and cur_epoch!=0):
print('epoch',cur_epoch)
print("loss: ",loss)
print("accarr",accarr)
sum=0
acc=0
for i in range(seq_num):
sum=sum+accarr[i]
acc=sum/seq_num
print(acc)
#print("pred",pred)
#print("target",y.view(-1))
'''net.eval()
with torch.no_grad():
for data in valid_loader:
X,y =data[0].to(device), data[1].to(device)
output, pred = net(X)
#y=y.permute(1,0)
#output=output.view(output_size, input_size, -1)
#output_unembedded=output.view(-1, hidden_size) @ embedding.weight.transpose(1,0)
loss = criterion(output,y.view(-1))
valid_loss+=loss.item()
check=0
for k,i in enumerate(pred):
if pred[k]==y.view(-1)[k]:
check=1
else:
check=0
break
if check==1:
valid_correct+=1
valid_total +=1
if((valid_correct/valid_total)>best_valid_acc):
best_valid_acc=(valid_correct/valid_total)
torch.save(net.state_dict(), "./save_best.pth")
if((cur_epoch+1)%(total_epoch*0.1)==0):
print(' Epoch {}/{}: Training Accuracy {} | Training Loss {} || Validation Accuracy {} | Validation Loss {}'.format(cur_epoch+1, total_epoch, train_correct/train_total,train_loss/len(train_loader),valid_correct/valid_total,valid_loss/len(valid_loader))) #accuray for each epoch
print(' Best validation so far {}'.format(best_valid_acc))
print('-------------------------------------------------------------------------------------------------------------------------------')'''
load_model = Model().to(device)
load_model.load_state_dict(torch.load("./save_best.pth"))
load_model.eval()
correct =0
total=0
with torch.no_grad(): # no gradient
for data in test_loader:
X, y = data[0].to(device), data[1].to(device) # store the Xs and labels
output = load_model(X, lengths)
y=y.permute(1,0)
for k, i in enumerate(output): #
if torch.argmax(i) == y[k]: # in every row find the highest prediction and comprae its index
correct += 1
total += 1
print("Test Accuracy: ", correct/total)