-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_fit.py
108 lines (84 loc) · 3.44 KB
/
multi_fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
N = 50
ex, ey = 0.01, 0.05
dy = np.array(N*[ey])
dx = np.array(N*[ex])
x = np.linspace(-5, 15, N)
#y = 1 + 0.5 * x + 0.2 * x**2 + 0.05 * x**3
y = 2*np.exp(-x**2) + np.exp( -((x - 7)/5)**2)
k = np.random.uniform(0, ey, N)
l = np.random.uniform(0, ex, N)
y = y + k #aggiungo errore
x = x + l
def f(x, *pars):
'''
Fit function.
This function is designed to conveniently fit data
whose model is a sum of the same function but with
various parameters e.g. :
A polynomial is the sum of monomials i.e. :
a0 + a1*x + ... + an*x**n = \sum_i ai * x**i
Or more in general we can fit:
F = \sum_{\theta} f(x, {\theta})
So what you do is loop on the single monomial or
single function build the final function.
In practice, we loop over the parameters by taking
them one at a time or by taking a subset of them.
To ensure that the code works it is therefore necessary
to pass an array of inits to cruve_fit as in principle
*pars are infinite parameters.
Indeed, the length of init corresponds
to how many parameters we are using.
'''
F = 0
# For a polynomial it's okay to take one parameter at a time
#for i, p in enumerate(pars):
# F += x**i * p
# For a Gaussian we must take for each addend three parameters
for p0, p1, p2 in zip(pars[0::3], pars[1::3], pars[2::3]):
F += p0 * np.exp( -((x - p1)/p2)**2 )
return F
init = np.array([1]*1)
init = np.array([1.5, 1, 1, 1, 6.5, 1])
#Eseguiamo il fit e stampiamo i risultati:
pars, covm = curve_fit(f, x, y, init, sigma=dy, absolute_sigma=False)
for i, p, dp in zip(range(len(pars)), pars, np.sqrt(covm.diagonal())):
print(f'p{i} = {p:.5f} +- {dp:.5f}')
#Calcoliamo il chi quadro,indice ,per quanto possibile, della bontà del fit:
chisq = sum(((y - f(x, *pars))/dy)**2.)
ndof = len(y) - len(pars)
print(f'chi quadro = {chisq:.3f} ({ndof:d} dof)')
#Definiamo un matrice di zeri che divverà la matrice di correlazione:
c=np.zeros((len(pars),len(pars)))
#Calcoliamo le correlazioni e le inseriamo nella matrice:
for i in range(0, len(pars)):
for j in range(0, len(pars)):
c[i][j] = (covm[i][j])/(np.sqrt(covm.diagonal()[i])*np.sqrt(covm.diagonal()[j]))
print(c) #matrice di correlazione
#Grafichiamo il risultato
fig1 = plt.figure(1)
#Parte superiore contenetnte il fit:
frame1=fig1.add_axes((.1,.35,.8,.6))
#frame1=fig1.add_axes((trasla lateralmente, trasla verticamente, larghezza, altezza))
frame1.set_title('Fit dati simulati',fontsize=20)
plt.ylabel('ampiezza [u.a.]',fontsize=10)
#plt.ticklabel_format(axis = 'both', style = 'sci', scilimits = (0,0))#notazione scientifica sugliassi
plt.grid()
plt.errorbar(x, y, dy, dx, fmt='.', color='black', label='dati') #grafico i punti
t = np.linspace(np.min(x),np.max(x), 10000)
s = f(t, *pars)
plt.plot(t,s, color='blue', alpha=0.5, label='best fit') #grafico del best fit
plt.legend(loc='best')#inserisce la legenda nel posto migliorte
#Parte inferiore contenente i residui
frame2=fig1.add_axes((.1,.1,.8,.2))
#Calcolo i residui normalizzari
ff = (y-f(x, *pars))/dy
frame2.set_ylabel('Residui Normalizzati')
plt.xlabel('tempo [u.a.]',fontsize=10)
#plt.ticklabel_format(axis = 'both', style = 'sci', scilimits = (0,0))
plt.plot(t, 0*t, color='red', linestyle='--', alpha=0.5) #grafico la retta costantemente zero
plt.plot(x, ff, '.', color='black') #grafico i residui normalizzati
plt.grid()
plt.show()