-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.html
715 lines (675 loc) · 88 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<style type="text/css">
@font-face {
font-family: octicons-link;
src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff');
}
body {
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%;
color: #333;
font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
font-size: 16px;
line-height: 1.6;
word-wrap: break-word;
}
a {
background-color: transparent;
}
a:active,
a:hover {
outline: 0;
}
strong {
font-weight: bold;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
img {
border: 0;
}
hr {
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre {
font-family: monospace, monospace;
font-size: 1em;
}
input {
color: inherit;
font: inherit;
margin: 0;
}
html input[disabled] {
cursor: default;
}
input {
line-height: normal;
}
input[type="checkbox"] {
box-sizing: border-box;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
* {
box-sizing: border-box;
}
input {
font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
a {
color: #4078c0;
text-decoration: none;
}
a:hover,
a:active {
text-decoration: underline;
}
hr {
height: 0;
margin: 15px 0;
overflow: hidden;
background: transparent;
border: 0;
border-bottom: 1px solid #ddd;
}
hr:before {
display: table;
content: "";
}
hr:after {
display: table;
clear: both;
content: "";
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 15px;
margin-bottom: 15px;
line-height: 1.1;
}
h1 {
font-size: 30px;
}
h2 {
font-size: 21px;
}
h3 {
font-size: 16px;
}
h4 {
font-size: 14px;
}
h5 {
font-size: 12px;
}
h6 {
font-size: 11px;
}
blockquote {
margin: 0;
}
ul,
ol {
padding: 0;
margin-top: 0;
margin-bottom: 0;
}
ol ol,
ul ol {
list-style-type: lower-roman;
}
ul ul ol,
ul ol ol,
ol ul ol,
ol ol ol {
list-style-type: lower-alpha;
}
dd {
margin-left: 0;
}
code {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
font-size: 12px;
}
pre {
margin-top: 0;
margin-bottom: 0;
font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace;
}
.select::-ms-expand {
opacity: 0;
}
.octicon {
font: normal normal normal 16px/1 octicons-link;
display: inline-block;
text-decoration: none;
text-rendering: auto;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.octicon-link:before {
content: '\f05c';
}
.markdown-body:before {
display: table;
content: "";
}
.markdown-body:after {
display: table;
clear: both;
content: "";
}
.markdown-body>*:first-child {
margin-top: 0 !important;
}
.markdown-body>*:last-child {
margin-bottom: 0 !important;
}
a:not([href]) {
color: inherit;
text-decoration: none;
}
.anchor {
display: inline-block;
padding-right: 2px;
margin-left: -18px;
}
.anchor:focus {
outline: none;
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 1em;
margin-bottom: 16px;
font-weight: bold;
line-height: 1.4;
}
h1 .octicon-link,
h2 .octicon-link,
h3 .octicon-link,
h4 .octicon-link,
h5 .octicon-link,
h6 .octicon-link {
color: #000;
vertical-align: middle;
visibility: hidden;
}
h1:hover .anchor,
h2:hover .anchor,
h3:hover .anchor,
h4:hover .anchor,
h5:hover .anchor,
h6:hover .anchor {
text-decoration: none;
}
h1:hover .anchor .octicon-link,
h2:hover .anchor .octicon-link,
h3:hover .anchor .octicon-link,
h4:hover .anchor .octicon-link,
h5:hover .anchor .octicon-link,
h6:hover .anchor .octicon-link {
visibility: visible;
}
h1 {
padding-bottom: 0.3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h1 .anchor {
line-height: 1;
}
h2 {
padding-bottom: 0.3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h2 .anchor {
line-height: 1;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h3 .anchor {
line-height: 1.2;
}
h4 {
font-size: 1.25em;
}
h4 .anchor {
line-height: 1.2;
}
h5 {
font-size: 1em;
}
h5 .anchor {
line-height: 1.1;
}
h6 {
font-size: 1em;
color: #777;
}
h6 .anchor {
line-height: 1.1;
}
p,
blockquote,
ul,
ol,
dl,
table,
pre {
margin-top: 0;
margin-bottom: 16px;
}
hr {
height: 4px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
}
ul,
ol {
padding-left: 2em;
}
ul ul,
ul ol,
ol ol,
ol ul {
margin-top: 0;
margin-bottom: 0;
}
li>p {
margin-top: 16px;
}
dl {
padding: 0;
}
dl dt {
padding: 0;
margin-top: 16px;
font-size: 1em;
font-style: italic;
font-weight: bold;
}
dl dd {
padding: 0 16px;
margin-bottom: 16px;
}
blockquote {
padding: 0 15px;
color: #777;
border-left: 4px solid #ddd;
}
blockquote>:first-child {
margin-top: 0;
}
blockquote>:last-child {
margin-bottom: 0;
}
table {
display: block;
width: 100%;
overflow: auto;
word-break: normal;
word-break: keep-all;
}
table th {
font-weight: bold;
}
table th,
table td {
padding: 6px 13px;
border: 1px solid #ddd;
}
table tr {
background-color: #fff;
border-top: 1px solid #ccc;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
img {
max-width: 100%;
box-sizing: content-box;
background-color: #fff;
}
code {
padding: 0;
padding-top: 0.2em;
padding-bottom: 0.2em;
margin: 0;
font-size: 85%;
background-color: rgba(0,0,0,0.04);
border-radius: 3px;
}
code:before,
code:after {
letter-spacing: -0.2em;
content: "\00a0";
}
pre>code {
padding: 0;
margin: 0;
font-size: 100%;
word-break: normal;
white-space: pre;
background: transparent;
border: 0;
}
.highlight {
margin-bottom: 16px;
}
.highlight pre,
pre {
padding: 16px;
overflow: auto;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border-radius: 3px;
}
.highlight pre {
margin-bottom: 0;
word-break: normal;
}
pre {
word-wrap: normal;
}
pre code {
display: inline;
max-width: initial;
padding: 0;
margin: 0;
overflow: initial;
line-height: inherit;
word-wrap: normal;
background-color: transparent;
border: 0;
}
pre code:before,
pre code:after {
content: normal;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.pl-c {
color: #969896;
}
.pl-c1,
.pl-s .pl-v {
color: #0086b3;
}
.pl-e,
.pl-en {
color: #795da3;
}
.pl-s .pl-s1,
.pl-smi {
color: #333;
}
.pl-ent {
color: #63a35c;
}
.pl-k {
color: #a71d5d;
}
.pl-pds,
.pl-s,
.pl-s .pl-pse .pl-s1,
.pl-sr,
.pl-sr .pl-cce,
.pl-sr .pl-sra,
.pl-sr .pl-sre {
color: #183691;
}
.pl-v {
color: #ed6a43;
}
.pl-id {
color: #b52a1d;
}
.pl-ii {
background-color: #b52a1d;
color: #f8f8f8;
}
.pl-sr .pl-cce {
color: #63a35c;
font-weight: bold;
}
.pl-ml {
color: #693a17;
}
.pl-mh,
.pl-mh .pl-en,
.pl-ms {
color: #1d3e81;
font-weight: bold;
}
.pl-mq {
color: #008080;
}
.pl-mi {
color: #333;
font-style: italic;
}
.pl-mb {
color: #333;
font-weight: bold;
}
.pl-md {
background-color: #ffecec;
color: #bd2c00;
}
.pl-mi1 {
background-color: #eaffea;
color: #55a532;
}
.pl-mdr {
color: #795da3;
font-weight: bold;
}
.pl-mo {
color: #1d3e81;
}
kbd {
display: inline-block;
padding: 3px 5px;
font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.task-list-item {
list-style-type: none;
}
.task-list-item+.task-list-item {
margin-top: 3px;
}
.task-list-item input {
margin: 0 0.35em 0.25em -1.6em;
vertical-align: middle;
}
:checked+.radio-label {
z-index: 1;
position: relative;
border-color: #4078c0;
}
.sourceLine {
display: inline-block;
}
code .kw { color: #000000; }
code .dt { color: #ed6a43; }
code .dv { color: #009999; }
code .bn { color: #009999; }
code .fl { color: #009999; }
code .ch { color: #009999; }
code .st { color: #183691; }
code .co { color: #969896; }
code .ot { color: #0086b3; }
code .al { color: #a61717; }
code .fu { color: #63a35c; }
code .er { color: #a61717; background-color: #e3d2d2; }
code .wa { color: #000000; }
code .cn { color: #008080; }
code .sc { color: #008080; }
code .vs { color: #183691; }
code .ss { color: #183691; }
code .im { color: #000000; }
code .va {color: #008080; }
code .cf { color: #000000; }
code .op { color: #000000; }
code .bu { color: #000000; }
code .ex { color: #000000; }
code .pp { color: #999999; }
code .at { color: #008080; }
code .do { color: #969896; }
code .an { color: #008080; }
code .cv { color: #008080; }
code .in { color: #008080; }
</style>
<style>
body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
padding-top: 0px;
}
</style>
</head>
<body>
<!-- README.md is generated from README.Rmd. Please edit that file -->
<h1 id="testotm">testOTM</h1>
<!-- badges: start -->
<!-- badges: end -->
<p><code>testOTM</code> is an R package that computes multivariate ranks and quantiles defined through the theory of optimal transportation. It also provides several applications of these statistics, most notably a method for two-sample multivariate goodness-of-fit testing.</p>
<h2 id="installation">Installation</h2>
<p>You can install the released version of <code>testOTM</code> from <a href="https://CRAN.R-project.org">CRAN</a> with:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb1-1" title="1"><span class="kw">install.packages</span>(<span class="st">"testOTM"</span>)</a></code></pre></div>
<p>You can install the development version from <a href="https://github.com/">GitHub</a> with:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb2-1" title="1"><span class="co"># install.packages("devtools")</span></a>
<a class="sourceLine" id="cb2-2" title="2"><span class="co"># devtools::install_github("Francis-Hsu/testOTM")</span></a></code></pre></div>
<h2 id="example">Example</h2>
<p>This is a basic example which shows you how to use <code>testOTM</code> to visualize the optimal transport map from (U[0, 1]^2) to a (scaled) bivariate Gaussian sample:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb3-1" title="1"><span class="kw">library</span>(testOTM)</a>
<a class="sourceLine" id="cb3-2" title="2"></a>
<a class="sourceLine" id="cb3-3" title="3"><span class="co"># generate bivariate normal data</span></a>
<a class="sourceLine" id="cb3-4" title="4">p =<span class="st"> </span><span class="dv">2</span></a>
<a class="sourceLine" id="cb3-5" title="5">n =<span class="st"> </span><span class="dv">100</span></a>
<a class="sourceLine" id="cb3-6" title="6">Sigma =<span class="st"> </span><span class="kw">matrix</span>(<span class="kw">c</span>(<span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">2</span>), <span class="dv">2</span>, <span class="dv">2</span>)</a>
<a class="sourceLine" id="cb3-7" title="7">eS =<span class="st"> </span><span class="kw">eigen</span>(Sigma, <span class="dt">symmetric =</span> <span class="ot">TRUE</span>)</a>
<a class="sourceLine" id="cb3-8" title="8">X =<span class="st"> </span><span class="kw">t</span>(eS<span class="op">$</span>vectors <span class="op">%*%</span><span class="st"> </span><span class="kw">diag</span>(<span class="kw">sqrt</span>(<span class="kw">pmax</span>(eS<span class="op">$</span>values, <span class="dv">0</span>)), p) <span class="op">%*%</span><span class="st"> </span><span class="kw">matrix</span>(<span class="kw">rnorm</span>(p <span class="op">*</span><span class="st"> </span>n), p))</a>
<a class="sourceLine" id="cb3-9" title="9"></a>
<a class="sourceLine" id="cb3-10" title="10"><span class="co"># compute the optimal transport map from U[0, 1]^2 to the data</span></a>
<a class="sourceLine" id="cb3-11" title="11"><span class="co"># notice that the data will be scale into [0, 1] range</span></a>
<a class="sourceLine" id="cb3-12" title="12">X.OTM =<span class="st"> </span><span class="kw">tos.fit</span>(X)</a>
<a class="sourceLine" id="cb3-13" title="13"></a>
<a class="sourceLine" id="cb3-14" title="14"><span class="co"># plot the restricted Voronoi diagram and the restricted Delaunay triangulation</span></a>
<a class="sourceLine" id="cb3-15" title="15">oldpar =<span class="st"> </span><span class="kw">par</span>(<span class="dt">mfrow =</span> <span class="kw">c</span>(<span class="dv">1</span>, <span class="dv">2</span>))</a>
<a class="sourceLine" id="cb3-16" title="16"><span class="kw">plot</span>(X.OTM, <span class="dt">which =</span> <span class="st">"Both"</span>, <span class="dt">draw.center =</span> F, <span class="dt">draw.map =</span> T)</a></code></pre></div>
<p><img src="" /><!-- --></p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb4-1" title="1"><span class="kw">par</span>(oldpar)</a></code></pre></div>
<h2 id="acknowledgment">Acknowledgment</h2>
<p>The author is extremely grateful to Prof. <a href="http://www.stat.columbia.edu/~bodhi/Bodhi/Welcome.html">Bodhisattva Sen</a> and his student Promit Ghosal for their guidance in the development of this package. The author would also like to thank Dr. <a href="https://members.loria.fr/BLevy/">Bruno Lévy</a> for his assistance with the <a href="http://alice.loria.fr/index.php/software/4-library/75-geogram.html">Geogram</a> library, and the <a href="http://www.trame-project.com/">TraME</a> team, whose <a href="https://github.com/TraME-Project/Rgeogram"><code>Rgeogram</code></a> package provides inspirations to the early build of this package.</p>
<h2 id="reference">Reference</h2>
<div id="refs" class="references">
<div id="ref-FA1987">
<p>Aurenhammer, F. 1987. “Power Diagrams: Properties, Algorithms and Applications.” <em>SIAM Journal on Computing</em> 16 (1): 78–96. <a href="https://doi.org/10.1137/0216006">https://doi.org/10.1137/0216006</a>.</p>
</div>
<div id="ref-B1991">
<p>Brenier, Yann. 1991. “Polar Factorization and Monotone Rearrangement of Vector-Valued Functions.” <em>Communications on Pure and Applied Mathematics</em> 44 (4): 375–417. <a href="https://doi.org/10.1002/cpa.3160440402">https://doi.org/10.1002/cpa.3160440402</a>.</p>
</div>
<div id="ref-CDS2013">
<p>Cheng, Siu-Wing, Tamal Krishna Dey, and Jonathan Richard Shewchuk. 2013. <em>Delaunay Mesh Generation</em>. Chapman; Hall/CRC.</p>
</div>
<div id="ref-CGHH2017">
<p>Chernozhukov, Victor, Alfred Galichon, Marc Hallin, and Marc Henry. 2017. “Monge–Kantorovich Depth, Quantiles, Ranks and Signs.” <em>The Annals of Statistics</em> 45 (1): 223–56. <a href="https://doi.org/10.1214/16-AOS1450">https://doi.org/10.1214/16-AOS1450</a>.</p>
</div>
<div id="ref-GS2019">
<p>Ghosal, Promit, and Bodhisattva Sen. 2019. “Multivariate Ranks and Quantiles Using Optimal Transportation and Applications to Goodness-of-Fit Testing.” <a href="http://arxiv.org/abs/1905.05340">http://arxiv.org/abs/1905.05340</a>.</p>
</div>
<div id="ref-GLSY2015">
<p>Gu, Xianfeng, Feng Luo, Jian Sun, and Shing-Tung Yau. 2015. “Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere Equations.” <em>Asian Journal of Mathematics</em> 20 (January). <a href="https://doi.org/10.4310/AJM.2016.v20.n2.a7">https://doi.org/10.4310/AJM.2016.v20.n2.a7</a>.</p>
</div>
<div id="ref-WEB:GEOGRAM">
<p>Inria, project ALICE-GRAPHYS. 2019. “Geogram: A Programming Library of Geometric Algorithms.” <a href="http://alice.loria.fr/software/geogram/doc/html/index.html">http://alice.loria.fr/software/geogram/doc/html/index.html</a>.</p>
</div>
<div id="ref-L2015">
<p>Lévy, Bruno. 2015. “A Numerical Algorithm for L2 Semi-Discrete Optimal Transport in 3D.” <em>ESAIM: M2AN</em> 49 (6): 1693–1715. <a href="https://doi.org/10.1051/m2an/2015055">https://doi.org/10.1051/m2an/2015055</a>.</p>
</div>
<div id="ref-L2015HAL">
<p>Lévy, Bruno. 2015. “Robustness and Efficiency of Geometric Programs The Predicate Construction Kit (PCK).” <em>Computer-Aided Design</em>. <a href="https://hal.inria.fr/hal-01225202">https://hal.inria.fr/hal-01225202</a>.</p>
</div>
<div id="ref-LS2018">
<p>Lévy, Bruno, and Erica L. Schwindt. 2018. “Notions of Optimal Transport Theory and How to Implement Them on a Computer.” <em>Computers & Graphics</em> 72: 135–48. <a href="https://doi.org/10.1016/j.cag.2018.01.009">https://doi.org/10.1016/j.cag.2018.01.009</a>.</p>
</div>
<div id="ref-Liu2009">
<p>Liu, Yang, Wenping Wang, Bruno Lévy, Feng Sun, Dong-Ming Yan, Lin Lu, and Chenglei Yang. 2009. “On Centroidal Voronoi Tessellation–Energy Smoothness and Fast Computation.” <em>ACM Transactions on Graphics</em> 28 (4): Article 101. <a href="https://doi.org/10.1145/1559755.1559758">https://doi.org/10.1145/1559755.1559758</a>.</p>
</div>
<div id="ref-M1995">
<p>McCann, Robert J. 1995. “Existence and Uniqueness of Monotone Measure-Preserving Maps.” <em>Duke Math. J.</em> 80 (2): 309–23. <a href="https://doi.org/10.1215/S0012-7094-95-08013-2">https://doi.org/10.1215/S0012-7094-95-08013-2</a>.</p>
</div>
<div id="ref-TOG2017">
<p>Toth, Csaba D., Joseph O’Rourke, and Jacob E. Goodman, eds. 2017. <em>Handbook of Discrete and Computational Geometry</em>. 3rd ed. Chapman; Hall/CRC.</p>
</div>
<div id="ref-Xin2016">
<p>Xin, Shi-Qing, Bruno Lévy, Zhonggui Chen, Lei Chu, Yaohui Yu, Changhe Tu, and Wenping Wang. 2016. “Centroidal Power Diagrams with Capacity Constraints: Computation, Applications, and Extension.” <em>ACM Trans. Graph.</em> 35 (6): 244:1–244:12. <a href="https://doi.org/10.1145/2980179.2982428">https://doi.org/10.1145/2980179.2982428</a>.</p>
</div>
</div>
</body>
</html>