-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnote.rkt
558 lines (456 loc) · 13.5 KB
/
note.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
#lang racket
(define atom?
(lambda (x)
(and (not (pair? x)) (not (null? x)))))
(define lat?
(lambda (l)
(cond
((null? l) #t)
((atom? (car l)) (lat? (cdr l)))
(else #f))))
(define member?
(lambda (a lat)
(cond
((null? lat) #f)
((equal? a (car lat)) #t)
(else (member? a (cdr lat))))))
(define rember
(lambda (a lat)
(cond
((null? lat) '())
((eq? a (car lat)) (cdr lat))
(else (cons (car lat) (rember a (cdr lat)))))))
(define firsts
(lambda (l)
(cond
((null? l) '())
(else (cons (car (car l)) (firsts (cdr l)))))))
(define seconds
(lambda (l)
(cond
((null? l) '())
(else (cons (car (cdr (car l))) (seconds (cdr l)))))))
(define insertR
(lambda (new old lat)
(cond
((null? lat) '())
((eq? old (car lat)) (cons old (cons new (cdr lat))))
(else (cons (car lat) (insertR new old (cdr lat)))))))
(define insertL
(lambda (new old lat)
(cond
((null? lat) '())
((eq? old (car lat)) (cons new lat))
(else (cons (car lat) (insertL new old (cdr lat)))))))
(define subst
(lambda (new old lat)
(cond
((null? lat) '())
((eq? old (car lat)) (cons new (cdr lat)))
(else (cons (car lat) (subst new old (cdr lat)))))))
(define subst2
(lambda (new o1 o2 lat)
(cond
((null? lat) '())
((or (eq? o1 (car lat)) (eq? o2 (car lat))) (cons new (subst2 new o1 o2 (cdr lat))))
(else (cons (car lat) (subst2 new o1 o2 (cdr lat)))))))
(define multirember
(lambda (a lat)
(cond
((null? lat) '())
((eq? a (car lat)) (multirember a (cdr lat)))
(else (cons (car lat) (multirember a (cdr lat)))))))
(define multiinsertR
(lambda (new old lat)
(cond
((null? lat) '())
((eq? old (car lat)) (cons old (cons new (multiinsertR new old (cdr lat)))))
(else (cons (car lat) (multiinsertR new old (cdr lat)))))))
(define multiinsertL
(lambda (new old lat)
(cond
((null? lat) '())
((eq? old (car lat)) (cons new (cons old (multiinsertL new old (cdr lat)))))
(else (cons (car lat) (multiinsertL new old (cdr lat)))))))
(define multisubst
(lambda (new old lat)
(cond
((null? lat) '())
((eq? old (car lat)) (cons new (multisubst new old (cdr lat))))
(else (cons (car lat) (multisubst new old (cdr lat)))))))
(define o+
(lambda (n m)
(cond
((zero? m) n)
(else (add1 (o+ n (sub1 m)))))))
(define o-
(lambda (n m)
(cond
((zero? m) n)
(else (o- (sub1 n) (sub1 m))))))
(define addtup
(lambda (tup)
(cond
((null? tup) 0)
(else (+ (car tup) (addtup (cdr tup)))))))
(define o*
(lambda (n m)
(cond
((zero? m) 0)
(else (o+ n (o* n (sub1 m)))))))
(define tup+
(lambda (tup1 tup2)
(cond
((null? tup1) tup2)
((null? tup2) tup1)
(else (cons (o+ (car tup1) (car tup2)) (tup+ (cdr tup1) (cdr tup2)))))))
(define o>
(lambda (n m)
(cond
((zero? n) #f)
((zero? m) #t)
(else (o> (sub1 n) (sub1 m))))))
(define o<
(lambda (n m)
(cond
((zero? m) #f)
((zero? n) #t)
(else (o< (sub1 n) (sub1 m))))))
(define o=
(lambda (n m)
(cond
((o< n m) #f)
((o> n m) #f)
(else #t))))
(define o^
(lambda (n m)
(cond
((zero? m) 1)
(else (o* n (o^ n (sub1 m)))))))
(define o/
(lambda (n m)
(cond
((o< n m) 0)
(else (add1 (o/ (o- n m) m))))))
(define length
(lambda (l)
(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))
(define pick
(lambda (n lat)
(cond
((zero? (o- n 1)) (car lat))
(else (pick (sub1 n) (cdr lat))))))
(define rempick
(lambda (n lat)
(cond
((zero? (o- n 1)) (cdr lat))
(else (cons (car lat) (rempick (sub1 n) (cdr lat)))))))
(define no-nums
(lambda (l)
(cond
((null? l) '())
((number? (car l)) (no-nums (cdr l)))
(else (cons (car l) (no-nums (cdr l)))))))
(define all-nums
(lambda (l)
(cond
((null? l) '())
((number? (car l)) (cons (car l) (all-nums (cdr l))))
(else (all-nums (cdr l))))))
(define eqan?
(lambda (a1 a2)
(cond
((and (number? a1) (number? a2)) (equal? a1 a2))
((or (number? a1) (number? a2)) #f)
(else (eq? a1 a2)))))
(define occur
(lambda (a lat)
(cond
((null? lat) 0)
((eqan? a (car lat)) (add1 (occur a (cdr lat))))
(else (occur a (cdr lat))))))
(define one?
(lambda (n)
(eq? n 1)))
(define rember*
(lambda (a l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? a (car l)) (rember* a (cdr l)))
(else (cons (car l) (rember* a (cdr l))))))
(else (cons (rember* a (car l)) (rember* a (cdr l)))))))
(define insertR*
(lambda (new old l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? old (car l)) (cons old (cons new (insertR* new old (cdr l)))))
(else (cons (car l) (insertR* new old (cdr l))))
)
)
(else (cons (insertR* new old (car l)) (insertR* new old (cdr l)))))))
(define occur*
(lambda (a l)
(cond
((null? l) 0)
((atom? (car l))
(cond
((eq? a (car l)) (add1 (occur* a (cdr l))))
(else (occur* a (cdr l)))
)
)
(else (o+ (occur* a (car l)) (occur* a (cdr l)))))))
(define leftmost
(lambda (l)
(cond
((atom? (car l)) (car l))
(else (leftmost (car l))))))
(define eqlist?
(lambda (l1 l2)
(cond
((and (null? l1) (null? l2)) #t)
((or (null? l1) (null? l2)) #f)
((and (atom? (car l1)) (atom? (car l2)))
(and (eqan? (car l1) (car l2)) (eqlist? (cdr l1) (cdr l2))))
((or (atom? (car l1)) (atom? (car l2))) #f)
(else (and (eqlist? (car l1) (car l2)) (eqlist? (cdr l1) (cdr l2))))
)
))
(define equal?
(lambda (l1 l2)
(cond
((and (atom? l1) (atom? l2)) (eqan? l1 l2))
((or (atom? l1) (atom? l2)) #f)
(else (eqlist? l1 l2)))))
(define numbered?
(lambda (aexp)
(cond
((atom? aexp) (number? aexp))
(else (and (numbered? (car aexp)) (numbered? (car (cdr (cdr aexp)))))))))
(define value
(lambda (nexp)
(cond
((atom? nexp) nexp)
(else
(cond
((eq? (car (cdr nexp)) '+) (o+ (value (car nexp)) (value (car (cdr (cdr nexp))))))
((eq? (car (cdr nexp)) '-) (o- (value (car nexp)) (value (car (cdr (cdr nexp))))))
((eq? (car (cdr nexp)) '*) (o* (value (car nexp)) (value (car (cdr (cdr nexp))))))
((eq? (car (cdr nexp)) '/) (o/ (value (car nexp)) (value (car (cdr (cdr nexp))))))
)
)
)
))
(define 1st-sub-exp
(lambda (nexp)
(car (cdr nexp))))
(define 2nd-sub-exp
(lambda (nexp)
(car (cdr (cdr nexp)))))
(define operator
(lambda (nexp)
(car nexp)))
(define sero?
(lambda (n)
(null? n)))
(define edd1
(lambda (n)
(cons '() n)))
(define zub1
(lambda (n)
(cdr n)))
(define co+
(lambda (n m)
(cond
((sero? m) n)
(else (co+ (edd1 n) (zub1 m))))))
(define set?
(lambda (l)
(cond
((null? l) #t)
((member? (car l) (cdr l)) #f)
(else (set? (cdr l))))))
(define makeset
(lambda (l)
(cond
((null? l) '())
((member? (car l) (cdr l)) (makeset (cdr l)))
(else (cons (car l) (makeset (cdr l)))))))
(define subset?
(lambda (set1 set2)
(cond
((null? set1) #t)
((member? (car set1) set2) (subset? (cdr set1) set2))
(else #f))))
(define eqset?
(lambda (set1 set2)
(and (subset? set1 set2) (subset? set2 set1))))
(define intersect?
(lambda (set1 set2)
(cond
((null? set1) #f)
((member? (car set1) set2) #t)
(else (intersect? (cdr set1) set2)))))
(define intersect
(lambda (set1 set2)
(cond
((null? set1) '())
((member? (car set1) set2) (cons (car set1) (intersect (cdr set1) set2)))
(else (intersect (cdr set1) set2)))))
(define union
(lambda (set1 set2)
(cond
((null? set1) set2)
((member? (car set1) set2) (union (cdr set1) set2))
(else (cons (car set1) (union (cdr set1) set2))))))
(define intersectall
(lambda (l)
(cond
((null? l) '())
((null? (cdr l)) (car l))
(else (intersect (car l) (intersectall (cdr l)))))))
(define a-pair?
(lambda (x)
(cond
((pair? x) #t)
(else #f))))
(define first
(lambda (p)
(car p)))
(define second
(lambda (p)
(car (cdr p))))
(define third
(lambda (p)
(car (cdr (cdr p)))))
(define build
(lambda (a b)
(cons a (cons b '()))))
(define fun?
(lambda (rel)
(set? (firsts rel))))
(define revrel
(lambda (rel)
(cond
((null? rel) '())
(else (cons (build (second (car rel)) (first (car rel))) (revrel (cdr rel)))))))
(define revpair
(lambda (p)
(build (second p) (first p))))
(define fullfun?
(lambda (rel)
(set? (seconds rel))))
(define rember-f
(lambda (test? a l)
(cond
((null? l) '())
((test? a (car l)) (cdr l))
(else (cons (car l) (rember-f test? a (cdr l)))))))
(define insertR-f
(lambda (test? new old l)
(cond
((null? l) '())
((test? old (car l)) (cons old (cons new (cdr l))))
(else (cons (car l) (insertR-f test? new old (cdr l)))))))
(define insertL-f
(lambda (test? new old l)
(cond
((null? l) '())
((test? old (car l)) (cons new l))
(else (cons (car l) (insertL-f test? new old (cdr l)))))))
(define seqL
(lambda (new old l)
(cons new (cons old l))))
(define seqR
(lambda (new old l)
(cons old (cons new l))))
(define seqS
(lambda (new old l)
(cons new l)))
(define insert-g
(lambda (seq)
(lambda (new old l)
(cond
((null? l) '())
((eq? old (car l)) (seq new old (cdr l)))
(else (cons (car l) ((insert-g seq) new old (cdr l))))))))
;(define insertL (insert-g seqL))
;(define insertR (insert-g seqR))
;(define subst ( insert-g seqS))
#|
(define insertL
(insert-g
(lambda (new old l)
(cons new (cons old l)))))
(define insertR
(insert-g
(lambda (new old l)
(cons old (cons new l)))))
|#
(define atom-to-function
(lambda (a)
(cond
((eq? a '+) o+)
((eq? a '-) o-)
((eq? a '*) o*)
((eq? a '/) o/)
)))
(define multirember&co
(lambda (a lat col)
(cond
((null? lat) (col '() 0))
((eq? a (car lat)) (multirember&co a (cdr lat) (lambda (newlat found) (col newlat (add1 found)))))
(else (multirember&co a (cdr lat) (lambda (newlat found) (col (cons (car lat) newlat) found)))))))
(define multiinsertLR&co
(lambda (new old lat col)
(cond
((null? lat) (col '() 0 0))
((eq? old (car lat)) (multiinsertLR&co new old (cdr lat) (lambda (newlat found changed) (col (cons old (cons new newlat)) (add1 found) (add1 changed)))))
(else (multiinsertLR&co new old (cdr lat) (lambda (newlat found changed) (col (cons (car lat) newlat) found changed)))))))
(define even?
(lambda (n)
(= (remainder n 2) 0)))
(define evens-only*&co
(lambda ( l col)
(cond
((null? l)
(col '() 1 0))
((atom? (car l))
(cond
((even? (car l))
(evens-only*&co (cdr l)
(lambda (newl p s)
(col (cons (car l) newl) (* (car l) p) s))))
(else (evens-only*&co (cdr l)
(lambda (newl p s)
(col newl p (+ (car l) s)))))))
(else (evens-only*&co (car l)
(lambda (newl p s)
(evens-only*&co (cdr l)
(lambda (newl2 p2 s2)
(col (cons newl newl2) (* p p2) (+ s s2))))))))))
;if lat is full of numbers then looking can not stop,so the looking is called partial functions
(define looking
(lambda (a lat)
(keep-looking a (pick 1 lat) lat)))
(define keep-looking
(lambda (a sorn lat)
(cond
((number? sorn) (keep-looking a (pick sorn lat) lat))
(else (eq? a sorn)))))
(define entity
(lambda (x)
(entity x)))
;if last-try returns true, then and (will-stop? last-try) (entity x) witll return false, it is conflicted
; if last-try returns false, then and (will-stop? last-try) (entity x) witll return false, it is conflicted
;so can not define will-stop? as below
#|
(define last-try
(lambda (x)
(and (will-stop? last-try) (entity x))))
|#