-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathkmeanie.js
222 lines (155 loc) · 4.52 KB
/
kmeanie.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//for kmeans,
// first group points,
// then calculate new center (avgX, avgY);
// then move
var _ = require('lodash');
var KMEANS = function(options) {
options = options || {};
if (!options.returnBodies) options.returnBodies = false;
if (!options.filterPoints) options.filterPoints = false;
var dimensions = 0,
pnts = [];
this.centers = [];
this.onCentersUpdated = null;
this.compile = function(clusterpoints, count, cb) {
setTimeout(function() {
var index = 0;
if (options.filterPoints) {
pnts = _.filter(clusterpoints, function(element, index) {
// tests if the element has a duplicate in the rest of the array
for (index += 1, length = clusterpoints.length; index < length; index += 1) {
if (_.isEqual(element, clusterpoints[index])) {
return false;
}
}
return true;
});
} else {
pnts = clusterpoints.slice(0);
}
//disperse the centers in the space
disperseCenters(getDimensions(pnts), count);
var converged = false;
var oldCenters = [];
var steps = 0;
//iterate
while (!converged) {
cluster();
converged = checkForStable(oldCenters);
oldCenters = _.map(this.centers, function(cent) {
return cent.center;
});
if (this.onCentersUpdated) {
this.onCentersUpdated(oldCenters, steps + 1);
}
steps++;
}
var data = {
steps: steps,
centers: options.returnBodies ? this.centers : _.map(this.centers, function(cent) {
return cent.center;
})
};
cb(null, data);
}.bind(this), 0);
};
var checkForStable = function(oldCenters) {
if (oldCenters.length === 0) return false;
var newCenters = _.map(this.centers, function(cent) {
return cent.center;
});
var tolerance = 1e-6;
for (var i = 0; i < newCenters.length; i++) {
if (distance(newCenters[i], oldCenters[i]) > tolerance)
return false;
}
return true;
}.bind(this);
var getAverages = function(points) {
if (points.length == 0)
return [0, 0];
var arr = [];
for (var i = 0; i < points[0].length; i++)
arr.push(0);
var sums = _.reduce(points, function(sums, current) {
for (var i = 0; i < current.length; i++) {
sums[i] += current[i];
}
return sums;
}, arr);
return _.map(sums, function(curr) {
return curr / points.length;
});
};
//this gets the range in each dimension to
//disperse the cluster centers
var getDimensions = function(points) {
dimensions = points[0].length;
var i, maximums = [],
minimums = [];
for (i = 0; i < dimensions; i++) {
maximums.push(-1e6);
minimums.push(1e6);
}
for (i = 0; i < points.length; i++) {
for (var j = 0; j < dimensions; j++) {
if (points[i][j] > maximums[j])
maximums[j] = points[i][j];
if (points[i][j] < minimums[j])
minimums[j] = points[i][j];
}
}
var retArr = [];
for (i = 0; i < dimensions; i++) {
retArr.push([minimums[i], maximums[i]]);
}
return retArr;
};
//disperse centers randomly within the space
var disperseCenters = function(ranges, num) {
this.centers = [];
for (var i = 0; i < num; i++) {
var cent = [];
_.forEach(ranges, function(dim) {
cent.push(dim[0] + Math.random() * (dim[1] - dim[0]));
});
this.centers.push({
center: cent,
bodies: []
});
}
}.bind(this);
var distance = function(pnt1, pnt2) {
var sum = 0;
if (!pnt1.length)
return Math.sqrt(Math.pow(pnt1 - pnt2, 2));
for (var i = 0; i < pnt1.length; i++) {
sum += (Math.pow(pnt1[i] - pnt2[i], 2));
}
return Math.sqrt(sum);
};
var cluster = function() {
var min, dis, assignToIndex, i;
_.forEach(this.centers, function(cluster) {
cluster.bodies = [];
});
//assign step
for (i = 0; i < pnts.length; i++) {
min = 1e6;
assignToIndex = -1;
for (var j = 0; j < this.centers.length; j++) {
dis = distance(pnts[i], this.centers[j].center);
if (dis < min) {
min = dis;
assignToIndex = j;
}
}
this.centers[assignToIndex].bodies.push(pnts[i]);
}
//move step
for (i = 0; i < this.centers.length; i++) {
this.centers[i].center = getAverages(this.centers[i].bodies);
}
}.bind(this);
};
module.exports = KMEANS;