-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path8403_host.py
98 lines (73 loc) · 3.08 KB
/
8403_host.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
import tensorflow as tf
from robotPi import robotPi
from rev_cam import rev_cam # 摄像头倒转添加
import os
import socket
import cv2
import numpy
import time
import sys
# tf模型目录
inference_path = tf.Graph()
filepath = os.getcwd() + '/model/472/-472' # 472
# /number is model name
temp_image = np.zeros(width * height * channel, 'uint8')
cap = cv2.VideoCapture(0)
def model_prediction:
def ReceiveVideo():
# IP地址'0.0.0.0'为等待客户端连接
address = ('', 8002)
# 建立socket对象,参数意义见https://blog.csdn.net/rebelqsp/article/details/22109925
# socket.AF_INET:服务器之间网络通信
# socket.SOCK_STREAM:流式socket , for TCP
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# 将套接字绑定到地址, 在AF_INET下,以元组(host,port)的形式表示地址.
s.bind(address)
# 开始监听TCP传入连接。参数指定在拒绝连接之前,操作系统可以挂起的最大连接数量。该值至少为1,大部分应用程序设为5就可以了。
s.listen(1)
def recvall(sock, count):
buf = b'' # buf是一个byte类型
while count:
# 接受TCP套接字的数据。数据以字符串形式返回,count指定要接收的最大数据量.
newbuf = sock.recv(count)
if not newbuf: return None
buf += newbuf
count -= len(newbuf)
return buf
# 接受TCP连接并返回(conn,address),其中conn是新的套接字对象,可以用来接收和发送数据。addr是连接客户端的地址。
# 没有连接则等待有连接
conn, addr = s.accept()
print('connect from:' + str(addr))
while 1:
start = time.time() # 用于计算帧率信息
length = recvall(conn, 16) # 获得图片文件的长度,16代表获取长度
stringData = recvall(conn, int(length)) # 根据获得的文件长度,获取图片文件
data = numpy.frombuffer(stringData, numpy.uint8) # 将获取到的字符流数据转换成1维数组
decimg = cv2.imdecode(data, cv2.IMREAD_COLOR) # 将数组解码成图像
# cv2.imwrite("./test.jpg", decimg)
# print(decimg)
cv2.waitKey(0.1)#1
cv2.imshow('SERVER',decimg)#显示图像
end = time.time()
seconds = end - start
fps = 1 / seconds;
conn.send(bytes(str(int(fps)), encoding='utf-8'))
# k = cv2.waitKey(10)&0xff
# if k == 27:
# break
s.close()
return decimal
# cv2.destroyAllWindows()
def auto_pilot_host(): # 自主前进程序
with tf.Session(graph=inference_path) as sess:
init = tf.global_variables_initializer()
sess.run(init)
saver = tf.train.import_meta_graph(filepath + '.meta') # 调用训练的模型
saver.restore(sess, filepath)
tf_X = sess.graph.get_tensor_by_name('input:0') # 调用所需要的参数
pred = sess.graph.get_operation_by_name('pred')
number = pred.outputs[0]
while True:
frame = ReceiveVideo()
if __name__ == '__main__':