-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgwr.m
235 lines (211 loc) · 7.19 KB
/
gwr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
function result = gwr(y,x,east,north,info);
% PURPOSE: compute geographically weighted regression
%----------------------------------------------------
% USAGE: results = gwr(y,x,east,north,info)
% where: y = dependent variable vector
% x = explanatory variable matrix
% east = x-coordinates in space
% north = y-coordinates in space
% info = a structure variable with fields:
% info.bwidth = scalar bandwidth to use or zero
% for cross-validation estimation (default)
% info.bmin = minimum bandwidth to use in CV search
% info.bmax = maximum bandwidth to use in CV search
% defaults: bmin = 0.1, bmax = 20
% info.dtype = 'gaussian' for Gaussian weighting (default)
% = 'exponential' for exponential weighting
% = 'tricube' for tri-cube weighting
% info.q = q-nearest neighbors to use for tri-cube weights
% (default: CV estimated)
% info.qmin = minimum # of neighbors to use in CV search
% info.qmax = maximum # of neighbors to use in CV search
% defaults: qmin = nvar+2, qmax = 4*nvar
% ---------------------------------------------------
% NOTE: res = gwr(y,x,east,north) does CV estimation of bandwidth
% ---------------------------------------------------
% RETURNS: a results structure
% results.meth = 'gwr'
% results.beta = bhat matrix (nobs x nvar)
% results.tstat = t-stats matrix (nobs x nvar)
% results.yhat = yhat
% results.resid = residuals
% results.sige = e'e/(n-dof) (nobs x 1)
% results.nobs = nobs
% results.nvar = nvars
% results.bwidth = bandwidth if gaussian or exponential
% results.q = q nearest neighbors if tri-cube
% results.dtype = input string for Gaussian, exponential weights
% results.iter = # of simplex iterations for cv
% results.north = north (y-coordinates)
% results.east = east (x-coordinates)
% results.y = y data vector
%---------------------------------------------------
% See also: prt,plt, prt_gwr, plt_gwr to print and plot results
%---------------------------------------------------
% References: Brunsdon, Fotheringham, Charlton (1996)
% Geographical Analysis, pp. 281-298
%---------------------------------------------------
% NOTES: uses auxiliary function scoref for cross-validation
%---------------------------------------------------
% written by: James P. LeSage 2/98
% University of Toledo
% Department of Economics
% Toledo, OH 43606
% jpl@jpl.econ.utoledo.edu
if nargin == 5 % user options
if ~isstruct(info)
error('gwr: must supply the option argument as a structure variable');
else
fields = fieldnames(info);
nf = length(fields);
% set defaults
[n k] = size(x);
bwidth = 0; dtype = 0; q = 0; qmin = k+2; qmax = 5*k;
bmin = 0.1; bmax = 20.0;
for i=1:nf
if strcmp(fields{i},'bwidth')
bwidth = info.bwidth;
elseif strcmp(fields{i},'dtype')
dstring = info.dtype;
if strcmp(dstring,'gaussian')
dtype = 0;
elseif strcmp(dstring,'exponential')
dtype = 1;
elseif strcmp(dstring,'tricube')
dtype = 2;
end;
elseif strcmp(fields{i},'q')
q = info.q;
elseif strcmp(fields{i},'qmax');
qmax = info.qmax;
elseif strcmp(fields{i},'qmin');
qmin = info.qmin;
elseif strcmp(fields{i},'bmin');
bmin = info.bmin;
elseif strcmp(fields{i},'bmax');
bmax = info.bmax;
end;
end; % end of for i
end; % end of if else
elseif nargin == 4
bwidth = 0; dtype = 0; dstring = 'gaussian';
bmin = 0.1; bmax = 20.0;
else
error('Wrong # of arguments to gwr');
end;
% error checking on inputs
[nobs nvar] = size(x);
[nobs2 junk] = size(y);
[nobs3 junk] = size(north);
[nobs4 junk] = size(east);
result.north = north;
result.east = east;
if nobs ~= nobs2
error('gwr: y and x must contain same # obs');
elseif nobs3 ~= nobs
error('gwr: north coordinates must equal # obs');
elseif nobs3 ~= nobs4
error('gwr: east coordinates must equal # in north');
end;
switch dtype
case{0,1} % bandwidth cross-validation
if bwidth == 0 % cross-validation
options = optimset('fminbnd');
optimset('MaxIter',500);
if dtype == 0 % Gaussian weights
[bdwt,junk,exitflag,output] = fminbnd('scoref',bmin,bmax,options,y,x,east,north,dtype);
elseif dtype == 1 % exponential weights
[bdwt,junk,exitflag,output] = fminbnd('scoref',bmin,bmax,options,y,x,east,north,dtype);
end;
if output.iterations == 500,
fprintf(1,'gwr: cv convergence not obtained in %4d iterations',output.iterations);
else
result.iter = output.iterations;
end;
else
bdwt = bwidth*bwidth; % user supplied bandwidth
end;
case{2} % q-nearest neigbhor cross-validation
if q == 0 % cross-validation
q = scoreq(qmin,qmax,y,x,east,north);
else
% use user-supplied q-value
end;
otherwise
end;
% do GWR using bdwt as bandwidth
[n k] = size(x);
bsave = zeros(n,k);
ssave = zeros(n,k);
sigv = zeros(n,1);
yhat = zeros(n,1);
resid = zeros(n,1);
wt = zeros(n,1);
d = zeros(n,1);
for iter=1:n;
dx = east - east(iter,1);
dy = north - north(iter,1);
d = (dx.*dx + dy.*dy);
sd = std(sqrt(d));
% sort distance to find q nearest neighbors
ds = sort(d);
if dtype == 2, dmax = ds(q,1); end;
if dtype == 0, % Gausian weights
wt = stdn_pdf(sqrt(d)/(sd*bdwt));
elseif dtype == 1, % exponential weights
wt = exp(-d/bdwt);
elseif dtype == 2, % tricube weights
wt = zeros(n,1);
nzip = find(d <= dmax);
wt(nzip,1) = (1-(d(nzip,1)/dmax).^3).^3;
end; % end of if,else
wt = sqrt(wt);
% computational trick to speed things up
% use non-zero wt to pull out y,x observations
nzip = find(wt >= 0.1);
ys = y(nzip,1).*wt(nzip,1);
xs = matmul(x(nzip,:),wt(nzip,1));
xpxi = pinv(xs'*xs);
b = xpxi*xs'*ys;
% compute predicted values
yhatv = xs*b;
yhat(iter,1) = x(iter,:)*b;
resid(iter,1) = y(iter,1) - yhat(iter,1);
% compute residuals
e = ys - yhatv;
% find # of non-zero observations
nadj = length(nzip);
sige = (e'*e)/nadj;
% compute t-statistics
sdb = sqrt(sige*diag(xpxi));
% store coefficient estimates and std errors in matrices
% one set of beta,std for each observation
bsave(iter,:) = b';
ssave(iter,:) = sdb';
sigv(iter,1) = sige;
end;
% fill-in results structure
result.meth = 'gwr';
result.nobs = nobs;
result.nvar = nvar;
if (dtype == 0 | dtype == 1)
result.bwidth = sqrt(bdwt);
else
result.q = q;
end;
result.beta = bsave;
result.tstat = bsave./ssave;
result.sige = sigv;
result.dtype = dstring;
result.y = y;
result.yhat = yhat;
% compute residuals and conventional r-squared
result.resid = resid;
sigu = result.resid'*result.resid;
ym = y - mean(y);
rsqr1 = sigu;
rsqr2 = ym'*ym;
result.rsqr = 1.0 - rsqr1/rsqr2; % r-squared
rsqr1 = rsqr1/(nobs-nvar);
rsqr2 = rsqr2/(nobs-1.0);
result.rbar = 1 - (rsqr1/rsqr2); % rbar-squared