-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinsertrows.m
153 lines (134 loc) · 4.91 KB
/
insertrows.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
function [C,RA,RB] = insertrows(A,B,ind)
% INSERTROWS - Insert rows into a matrix at specific locations
% C = INSERTROWS(A,B,IND) inserts the rows of matrix B into the matrix A at
% the positions IND. Row k of matrix B will be inserted after position IND(k)
% in the matrix A. If A is a N-by-X matrix and B is a M-by-X matrix, C will
% be a (N+M)-by-X matrix. IND can contain non-integers.
%
% If B is a 1-by-N matrix, B will be inserted for each insertion position
% specified by IND. If IND is a single value, the whole matrix B will be
% inserted at that position. If B is a single value, B is expanded to a row
% vector. In all other cases, the number of elements in IND should be equal to
% the number of rows in B, and the number of columns, planes etc should be the
% same for both matrices A and B.
%
% Values of IND smaller than one will cause the corresponding rows to be
% inserted in front of A. C = INSERTROWS(A,B) will simply append B to A.
%
% If any of the inputs are empty, C will return A. If A is sparse, C will
% be sparse as well.
%
% [C, RA, RB] = INSERTROWS(...) will return the row indices RA and RB for
% which C corresponds to the rows of either A and B.
%
% Examples:
% % the size of A,B, and IND all match
% C = insertrows(rand(5,2),zeros(2,2),[1.5 3])
% % the row vector B is inserted twice
% C = insertrows(ones(4,3),1:3,[1 Inf])
% % matrix B is expanded to a row vector and inserted twice (as in 2)
% C = insertrows(ones(5,3),999,[2 4])
% % the whole matrix B is inserted once
% C = insertrows(ones(5,3),zeros(2,3),2)
% % additional output arguments
% [c,ra,rb] = insertrows([1:4].',99,[0 3])
% c.' % -> [99 1 2 3 99 4]
% c(ra).' % -> [1 2 3 4]
% c(rb).' % -> [99 99]
%
% Using permute (or transpose) INSERTROWS can easily function to insert
% columns, planes, etc:
%
% % inserting columns, by using the transpose operator:
% A = zeros(2,3) ; B = ones(2,4) ;
% c = insertrows(A.', B.',[0 2 3 3]).' % insert columns
% % inserting other dimensions, by using permute:
% A = ones(4,3,3) ; B = zeros(4,3,1) ;
% % set the dimension on which to operate in front
% C = insertrows(permute(A,[3 1 2]), permute(B,[3 1 2]),1) ;
% C = ipermute(C,[3 1 2])
%
% See also HORZCAT, RESHAPE, CAT
% for Matlab R13
% version 2.0 (may 2008)
% (c) Jos van der Geest
% email: jos@jasen.nl
% History:
% 1.0, feb 2006 - created
% 2.0, may 2008 - incorporated some improvements after being selected as
% "Pick of the Week" by Jiro Doke, and reviews by Tim Davis & Brett:
% - horizontal concatenation when two arguments are provided
% - added example of how to insert columns
% - mention behavior of sparse inputs
% - changed "if nargout" to "if nargout>1" so that additional outputs are
% only calculated when requested for
error(nargchk(2,3,nargin)) ;
if nargin==2,
% just horizontal concatenation, suggested by Tim Davis
ind = size(A,1) ;
end
% shortcut when any of the inputs are empty
if isempty(B) || isempty(ind),
C = A ;
if nargout > 1,
RA = 1:size(A,1) ;
RB = [] ;
end
return
end
sa = size(A) ;
% match the sizes of A, B
if numel(B)==1,
% B has a single argument, expand to match A
sb = [1 sa(2:end)] ;
B = repmat(B,sb) ;
else
% otherwise check for dimension errors
if ndims(A) ~= ndims(B),
error('insertrows:DimensionMismatch', ...
'Both input matrices should have the same number of dimensions.') ;
end
sb = size(B) ;
if ~all(sa(2:end) == sb(2:end)),
error('insertrows:DimensionMismatch', ...
'Both input matrices should have the same number of columns (and planes, etc).') ;
end
end
ind = ind(:) ; % make as row vector
ni = length(ind) ;
% match the sizes of B and IND
if ni ~= sb(1),
if ni==1 && sb(1) > 1,
% expand IND
ind = repmat(ind,sb(1),1) ;
elseif (ni > 1) && (sb(1)==1),
% expand B
B = repmat(B,ni,1) ;
else
error('insertrows:InputMismatch',...
'The number of rows to insert should equal the number of insertion positions.') ;
end
end
sb = size(B) ;
% the actual work
% 1. concatenate matrices
C = [A ; B] ;
% 2. sort the respective indices, the first output of sort is ignored (by
% giving it the same name as the second output, one avoids an extra
% large variable in memory)
[abi,abi] = sort([[1:sa(1)].' ; ind(:)]) ;
% 3. reshuffle the large matrix
C = C(abi,:) ;
% 4. reshape as A for nd matrices (nd>2)
if ndims(A) > 2,
sc = sa ;
sc(1) = sc(1)+sb(1) ;
C = reshape(C,sc) ;
end
if nargout > 1,
% additional outputs required
R = [zeros(sa(1),1) ; ones(sb(1),1)] ;
R = R(abi) ;
RA = find(R==0) ;
RB = find(R==1) ;
end