Skip to content

Latest commit

 

History

History
57 lines (39 loc) · 2.37 KB

README.md

File metadata and controls

57 lines (39 loc) · 2.37 KB

Introduction

The goal of this assignment is to implement the Deep Q-Learning algorithm with a simple continuous time 1-pendulumn enviroment, using discrete control input.

Setup the enviroment

Open the terminal and execute the following commands:

sudo apt install python3-numpy python3-scipy python3-matplotlib curl

sudo sh -c "echo 'deb [arch=amd64] http://robotpkg.openrobots.org/packages/debian/pub $(lsb_release -sc) robotpkg' >> /etc/apt/sources.list.d/robotpkg.list"

sudo sh -c "echo 'deb [arch=amd64] http://robotpkg.openrobots.org/wip/packages/debian/pub $(lsb_release -sc) robotpkg' >> /etc/apt/sources.list.d/robotpkg.list"

curl http://robotpkg.openrobots.org/packages/debian/robotpkg.key | sudo apt-key add -

sudo apt-get update

If you are using Ubuntu 20.04 run:

sudo apt install robotpkg-py38-pinocchio robotpkg-py38-example-robot-data robotpkg-urdfdom robotpkg-py38-qt5-gepetto-viewer-corba robotpkg-py38-quadprog robotpkg-py38-tsid

If you are using Ubuntu 22.04 run:

sudo apt install robotpkg-py310-pinocchio robotpkg-py310-example-robot-data robotpkg-urdfdom robotpkg-py310-qt5-gepetto-viewer-corba robotpkg-py310-quadprog robotpkg-py310-tsid

Configure the environment variables by adding the following lines to your file ~/.bashrc

To add the following command you can use the nano editor or the gedit editor:

  • nano ~/.bashrc
  • gedit ~/.bashrc
export PATH=/opt/openrobots/bin:$PATH
export PKG_CONFIG_PATH=/opt/openrobots/lib/pkgconfig:$PKG_CONFIG_PATH
export LD_LIBRARY_PATH=/opt/openrobots/lib:$LD_LIBRARY_PATH
export ROS_PACKAGE_PATH=/opt/openrobots/share
export PYTHONPATH=$PYTHONPATH:/opt/openrobots/lib/python3.8/site-packages
export PYTHONPATH=$PYTHONPATH:<folder_containing_dqn>

where <folder_containing_dqn> is the folder containing the "dqn_pendulumn" folder, which in turns contains all the python code of this class.

Folder organization

  • display.py: connect to geppetto-viewer or webbrowser
  • pendulumn.py: Create a continuous state simulation environment for a N-pendulum
  • pendulumn_dci.py: Describe continuous state pendulum environment with discrete control input (derived from pendulumn.py)
  • replay_buffer.py: create a replay buffer class, to store the experiences
  • dqn_agent.py: create a deep-q-network learning agent using the tensorflow library
  • dqn_main.py: main file for the dqn algorithm applied to a single pendulumn enviroment