-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgradcam.py
147 lines (117 loc) · 5.77 KB
/
gradcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Image
import cv2
import matplotlib.pyplot as plt
import argparse
import torch
import os
import sys
import gc
import numpy as np
parser = argparse.ArgumentParser(description='Feature map Grad CAM')
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--training_from',type=str,default='vimeo')
parser.add_argument('--model', type=str, default='model')
parser.add_argument('--model_dir', type=str, default='./AdaCoF_all_share')
parser.add_argument('--checkpoint', type=str, default='./AdaCoF_all_share/model50.pth')
parser.add_argument('--log', type=str, default='./test_grad_cam.txt')
parser.add_argument('--out_dir', type=str, default='./output/AdaCoF_all_share')
parser.add_argument('--kernel_size', type=int, default=5)
parser.add_argument('--dilation', type=int, default=1)
parser.add_argument('--pr_path', type=str, default='../../test_input/middlebury_others/input/Beanbags/frame10.png')
parser.add_argument('--ne_path', type=str, default='../../test_input/middlebury_others/input/Beanbags/frame11.png')
parser.add_argument('--gt', type=str , default = '../../test_input/middlebury_others/gt/Beanbags/frame10i11.png')
parser.add_argument('--base_img', type=str , default = '../../test_input/middlebury_others/input/Beanbags/frame11.png')
parser.add_argument('--base_img_type', type=str , default = 'ne',help = ['pr','ne'])
parser.add_argument('--target_layer', type=str , default = 'model.get_kernel.moduleDeconv2',help = "Check your model layer")
class GradCAM:
def __init__(self, model, target_layer_name):
self.model = model
self.target_layer_name = target_layer_name
self.gradients = None
self.target_layer = None
self.target_output_list = []
self.gradients_list = []
for name, layer in self.model.named_modules():
if name == self.target_layer_name:
self.target_layer = layer
layer.register_forward_hook(self.save_output)
break
if self.target_layer is None:
raise ValueError(f"Target layer '{self.target_layer_name}' not found in the model.")
self.target_layer.register_backward_hook(self.save_gradients)
def save_output(self, module, input, output):
self.target_output = output
self.target_output_list.append(self.target_output)
print(f'Target Layer Output Feature map shape : {output.shape}')
def save_gradients(self, module, grad_input, grad_output):
self.gradients = grad_output[0]
self.gradients_list.append(self.gradients)
print(f'Gradient Output shape : {self.gradients.shape}')
def get_gradcam(self, pr_img,ne_img,choice,model_dir):
self.model.zero_grad()
output = self.model(pr_img,ne_img)
output.backward(gradient=output)
if model_dir != './AdaCoF_all_xshare':
if choice == 'pr':
alpha = torch.mean(self.gradients_list[0], dim=(2, 3), keepdim=True) # GAP
gradcam = torch.sum(alpha * self.target_output_list[0], dim=1, keepdim=True)
else:
alpha = torch.mean(self.gradients_list[1], dim=(2, 3), keepdim=True) # GAP
gradcam = torch.sum(alpha * self.target_output_list[1], dim=1, keepdim=True)
else:
alpha = torch.mean(self.gradients, dim=(2, 3), keepdim=True) # GAP
gradcam = torch.sum(alpha * self.target_output, dim=1, keepdim=True)
gradcam = F.relu(gradcam)
gradcam /= torch.max(gradcam) + 1e-9
return gradcam
def overlay_gradcam_on_image(image, gradcam):
heatmap = cv2.resize(gradcam, (image.shape[1], image.shape[0]))
heatmap_normalized = (heatmap - np.min(heatmap)) / (np.max(heatmap) - np.min(heatmap) + 1e-9) * 255
# Convert the heatmap to a 3-channel image with transparency
heatmap_overlay = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), cv2.COLORMAP_JET)
heatmap_overlay = cv2.cvtColor(heatmap_overlay, cv2.COLOR_BGR2RGB)
# heatmap_overlay[:, :, :3] # Set the transparency (adjust as needed)
overlaid_image = cv2.addWeighted(image, 1, heatmap_overlay, 0.5, 0)
return overlaid_image
def main():
args = parser.parse_args()
torch.cuda.set_device(args.gpu_id)
sys.path.append('/home/work/capstone/Final')
sys.path.append(args.model_dir)
import models
if args.log is not None:
logfile = open(args.log,'a')
logfile.write(f'---------------' + '\n' + f'Model : {args.model_dir.replace(".","")}' +'\n')
if torch.cuda.is_available():
device = torch.device('cuda')
else:
devcie = torch.device('cpu')
model = models.Model(args,'models.')
print('Loading the model...')
checkpoint = torch.load(args.checkpoint)
model.load(checkpoint['state_dict'])
current_epoch = checkpoint['epoch']
# for name, layer in model.named_modules():
# print(name)
pr_image = Image.open(args.pr_path)
ne_image = Image.open(args.ne_path)
gt_image = Image.open(args.gt)
base_image = Image.open(args.base_img)
preprocess = transforms.Compose([
transforms.ToTensor()
])
pr_img = preprocess(pr_image).unsqueeze(0).to(device)
ne_img = preprocess(ne_image).unsqueeze(0).to(device)
model.eval()
gradcam_calculator = GradCAM(model, target_layer_name=args.target_layer)
gradcam = gradcam_calculator.get_gradcam(pr_img,ne_img,args.base_img_type,args.model_dir)
gradcam_heatmap = gradcam[0, 0].cpu().detach().numpy()
overlaid_image = overlay_gradcam_on_image(np.array(base_image), gradcam_heatmap)
result = Image.fromarray(overlaid_image)
result.save(args.out_dir + f'/result_{args.base_img_type}.png')
if __name__ == "__main__":
main()