-
Notifications
You must be signed in to change notification settings - Fork 106
/
Copy pathpreprocess.py
130 lines (107 loc) · 4.28 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import html
import pickle
import numpy as np
import xml.etree.cElementTree as ElementTree
"""
- all points:
>> [[x1, y1, e1], ..., [xn, yn, en]]
- indexed values
>> [h1, ... hn]
"""
def distance(p1, p2, axis=None):
return np.sqrt(np.sum(np.square(p1 - p2), axis=axis))
def clear_middle(pts):
to_remove = set()
for i in range(1, len(pts) - 1):
p1, p2, p3 = pts[i - 1: i + 2, :2]
dist = distance(p1, p2) + distance(p2, p3)
if dist > 1500:
to_remove.add(i)
npts = []
for i in range(len(pts)):
if i not in to_remove:
npts += [pts[i]]
return np.array(npts)
def separate(pts):
seps = []
for i in range(0, len(pts) - 1):
if distance(pts[i], pts[i+1]) > 600:
seps += [i + 1]
return [pts[b:e] for b, e in zip([0] + seps, seps + [len(pts)])]
def main():
data = []
charset = set()
file_no = 0
for root, dirs, files in os.walk('.'):
for file in files:
file_name, extension = os.path.splitext(file)
if extension == '.xml':
file_no += 1
print('[{:5d}] File {} -- '.format(file_no, os.path.join(root, file)), end='')
xml = ElementTree.parse(os.path.join(root, file)).getroot()
transcription = xml.findall('Transcription')
if not transcription:
print('skipped')
continue
texts = [html.unescape(s.get('text')) for s in transcription[0].findall('TextLine')]
points = [s.findall('Point') for s in xml.findall('StrokeSet')[0].findall('Stroke')]
strokes = []
mid_points = []
for ps in points:
pts = np.array([[int(p.get('x')), int(p.get('y')), 0] for p in ps])
pts[-1, 2] = 1
pts = clear_middle(pts)
if len(pts) == 0:
continue
seps = separate(pts)
for pss in seps:
if len(seps) > 1 and len(pss) == 1:
continue
pss[-1, 2] = 1
xmax, ymax = max(pss, key=lambda x: x[0])[0], max(pss, key=lambda x: x[1])[1]
xmin, ymin = min(pss, key=lambda x: x[0])[0], min(pss, key=lambda x: x[1])[1]
strokes += [pss]
mid_points += [[(xmax + xmin) / 2., (ymax + ymin) / 2.]]
distances = [-(abs(p1[0] - p2[0]) + abs(p1[1] - p2[1]))
for p1, p2 in zip(mid_points, mid_points[1:])]
splits = sorted(np.argsort(distances)[:len(texts) - 1] + 1)
lines = []
for b, e in zip([0] + splits, splits + [len(strokes)]):
lines += [[p for pts in strokes[b:e] for p in pts]]
print('lines = {:4d}; texts = {:4d}'.format(len(lines), len(texts)))
charset |= set(''.join(texts))
data += [(texts, lines)]
print('data = {}; charset = ({}) {}'.format(len(data), len(charset), ''.join(sorted(charset))))
translation = {'<NULL>': 0}
for c in ''.join(sorted(charset)):
translation[c] = len(translation)
def translate(txt):
return list(map(lambda x: translation[x], txt))
dataset = []
labels = []
for texts, lines in data:
for text, line in zip(texts, lines):
line = np.array(line, dtype=np.float32)
line[:, 0] = line[:, 0] - np.min(line[:, 0])
line[:, 1] = line[:, 1] - np.mean(line[:, 1])
dataset += [line]
labels += [translate(text)]
whole_data = np.concatenate(dataset, axis=0)
std_y = np.std(whole_data[:, 1])
norm_data = []
for line in dataset:
line[:, :2] /= std_y
norm_data += [line]
dataset = norm_data
print('datset = {}; labels = {}'.format(len(dataset), len(labels)))
try:
os.makedirs('data')
except FileExistsError:
pass
np.save(os.path.join('data', 'dataset'), np.array(dataset))
np.save(os.path.join('data', 'labels'), np.array(labels))
with open(os.path.join('data', 'translation.pkl'), 'wb') as file:
pickle.dump(translation, file)
if __name__ == '__main__':
main()