-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeta-training.py
341 lines (235 loc) · 13.9 KB
/
meta-training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import logging
import copy
import subprocess
import os
import numpy as np
import sys
import torch
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from datetime import datetime
import configs.classification.class_parser_har as class_parser_har
import model.modelfactory as mf
import utils.utils as utils
from utils.utils import sample_subject,sample_metatest_data, prepare_json_stats, prepare_json_dataset
from experiment.experiment import experiment
from model.meta_learner import MetaLearingClassification
from datasets.utils import concat_samples
from datasets.har import get_dataloaders
def main():
python_command = [sys.executable.split('/')[-1]]
p = class_parser_har.Parser()
rank = p.parse_known_args()[0].rank
all_args = vars(p.parse_known_args()[0])
print("All args = ", all_args)
args = utils.get_run(vars(p.parse_known_args()[0]), rank)
if args['model'] == 'oml' and not args['random']:
print('For oml model, random must be True')
sys.exit()
if args['model'] == 'maml' and args['random']:
print('For maml model, random must be False')
sys.exit()
# prepare augmentation
dsc = 'None'
print('AUG ', args['augmentation'])
if args['augmentation'] is not None:
dsc = ''
if 'Jitter' in args['augmentation']:
dsc += 'J'
if 'Scale' in args['augmentation']:
dsc += 'S'
if 'Perm' in args['augmentation']:
dsc += 'P'
if 'MagW' in args['augmentation']:
dsc += 'M'
if 'TimeW' in args['augmentation']:
dsc += 'T'
print('dsc ', dsc)
train_loader = get_dataloaders(args['dataset'],
args['dataset_path'],
is_train=True,
batch_size=1,
is_standardized=args['is_standardized'],
dataloader=False,
data_augmentation = args['augmentation'])
args['augmentation_ref'] = dsc
iterator_train_complete = get_dataloaders(args['dataset'],
args['dataset_path'],
is_train=True,
batch_size=args['batch_size'],
is_standardized=args['is_standardized'])
for run in range(args['runs']):
print('\n run: ', run)
if args['new_seed']:
args['seed'] = int(datetime.now().timestamp())
print('\n seed ',args['seed'])
utils.set_seed(args['seed'])
# PREPARES LOGGERS
my_experiment = experiment('', args, "../" + args['main_folder'] +"/" + args['name'] + "/" + args['model'] + "/" + args['scenario'] + "/" + args['dataset'] + "/" + dsc , commit_changes=False, rank=args['steps'], seed=1)
print(' path ' , my_experiment.path)
writer = SummaryWriter(my_experiment.path + "tensorboard")
logger = logging.getLogger('experiment')
if args['dataset_path'] is None:
args['dataset_path'] = train_loader.get_dataset_path()
# setting class labels
args['labels'] = [str(i) for i in train_loader.get_class_labels()]
# setting trajectory and random classes
number_classes_dataset = train_loader.get_num_classes()
number_classes = round(number_classes_dataset * args['fraction_classes'])
args['number_classes_dataset'] = number_classes_dataset
args['data_size'] = train_loader.get_data_size()
print('data size' , args['data_size'] )
random_positions = np.random.choice(len(args['labels']), number_classes,replace=False)
random_labels = [args['labels'][pos] for pos in random_positions]
print(' random_labels ', random_labels)
if args['random']:
print('random')
args['classes_trajectory'] = random_labels[0:round(number_classes/2)]
args['classes_random'] = random_labels[round(number_classes/2):]
else:
print('not random')
args['classes_trajectory'] = random_labels[0:round(number_classes)]
args['classes_random'] = ''
# print for validation
print('\nargs[classes_trajectory] ', args['classes_trajectory'] )
print('\nargs[classes_random] ', args['classes_random'] )
print('\nargs[labels] ', args['labels'] )
if args['random']:
args['label_training'] = args['classes_random'] + args['classes_trajectory']
else:
args['label_training'] = args['classes_trajectory']
print('\nargs[label_training] ', args['label_training'] )
print('\nargs[classes_trajectory] after', args['classes_trajectory'] )
classes_trajectory = np.array(list(map(int, args['classes_trajectory'])))
classes_random = np.array(list(map(int, args['classes_random'])))
print('classes_trajectory ', classes_trajectory)
print('classes_random ', classes_random)
# setting subject to sample data
args['subject'] = train_loader.get_subject_id()
args['subjects_candidate'] = sample_subject(train_loader,
target = args['label_training'],
root=args['dataset_path'],
group='train'
)
args['subject_offline_train'] = args['subjects_candidate']
# print for validation
print('\nargs[subject] ', args['subject'] )
print('\nargs[subject_offline_train] ', args['subject_offline_train'] )
# sample sujects
data_train = sample_metatest_data(train_loader,
target=args['subject_offline_train'],
root=args['dataset_path'],
group='train',
task='subject')
# selects trajectory classes
dataset_trajectory = utils.remove_classes_ucihar(data_train, classes_trajectory)
print('\ndataset trajectory classes', np.unique((dataset_trajectory.Y).numpy()))
# selects random classes
if args['random']:
dataset_random = utils.remove_classes_ucihar(data_train, classes_random)
print('\ndataset random classes',np.unique((dataset_random.Y).numpy()))
else:
dataset_random= ''
# PREPARES DATA EVALUATION
# train - keeps classes in trajectory and random for the subjects uses to training
dataset_train_eval = copy.deepcopy(dataset_trajectory)
if args['random']:
dataset_train_eval = concat_samples(dataset_train_eval ,dataset_random)
# creates iterator
iterator_train = DataLoader(dataset_train_eval,
batch_size=args['batch_size'],
shuffle=True)
print('\ndataset_train eval', np.unique((dataset_train_eval.Y).numpy()))
# test - keeps classes in trajectory and random sets in test set (different users)
print('\niterator_test', np.unique((iterator_train.dataset.Y).numpy()))
test_loader = get_dataloaders(args['dataset'],
args['dataset_path'],
is_train=False,
batch_size=1,
is_standardized=args['is_standardized'],
dataloader=False)
# sample only classes used to learning
dataset_test = utils.remove_classes_ucihar(test_loader, np.concatenate((classes_random,classes_trajectory)))
print('\ndataset_test', np.unique((dataset_test.Y).numpy()))
#creates iterator
iterator_test = DataLoader(dataset_test,
batch_size=args['batch_size'],
shuffle=True)
# selects data_train and data_test to evaluate - entire dataset
print('\niterator_test', np.unique((iterator_test.dataset.Y).numpy()))
iterator_test_complete = get_dataloaders(args['dataset'],
args['dataset_path'],
is_train=False,
batch_size=args['batch_size'],
is_standardized=args['is_standardized'])
# PREPARES MODEL
config = mf.ModelFactory.get_model("na", dataset=args['network_id'],
output_dimension=args['number_classes_dataset'],
channels=args['channels'],
data_size = args['data_size'],
cnn_layers = args['layers'],
kernel = args['kernel'],
stride = args['stride'],
out_linear = args['out_linear'])
print('config ', config)
my_experiment.results["Class info"] = prepare_json_dataset(data_train)
gpu_to_use = rank % args["gpus"]
if torch.cuda.is_available():
device = torch.device('cuda:' + str(gpu_to_use))
logger.info("Using gpu : %s", 'cuda:' + str(gpu_to_use))
else:
device = torch.device('cpu')
maml = MetaLearingClassification(args, config).to(device)
avg_acc = 0
acc_loss = []
#print('maml.net ', maml.net)
for step in range(args['steps']):
print('step ', step)
t = maml.select_classes2train(classes_trajectory , args['tasks'])
#print('tasks ', t)
x_spt, y_spt, x_qry, y_qry = maml.select_samples2train_new(dataset_trajectory, t, dataset_random,
classes_random,
num_support=args['update_step'], num_query=args['query'],
random=args['random'], reset = args['reset'])
if torch.cuda.is_available():
x_spt, y_spt, x_qry, y_qry = x_spt.to(device), y_spt.to(device), x_qry.to(device), y_qry.to(device)
accs, loss = maml(x_spt, y_spt, x_qry, y_qry)
avg_acc += accs[-1]
# Evaluation during training for sanity checksi
if step % 100 == 0:
#writer.add_scalar('F:/abordagens/mrcl/experiment', accs[-1], step)
#logger.info('step: %d \t training acc %s', step, str(accs))
result_loss = [tensor.item() for tensor in loss]
spt = [tensor.item() for tensor in y_spt]
results = {"step": step, "acc": accs.tolist(), "loss": result_loss, "y_spt": spt, "y_qry": y_qry.tolist()}
acc_loss.append(results)
my_experiment.add_result("Learning stats", acc_loss)
# train and test evaluation according to training data
stats = utils.log_accuracy_har_v2(maml.net, my_experiment, iterator_train, device, writer, step, args['labels'], 'Train', args)
my_experiment.add_result("Train", prepare_json_stats(stats))
stats = utils.log_accuracy_har_v2(maml.net, my_experiment, iterator_test, device, writer, step,args['labels'], 'Test', args)
my_experiment.add_result("Test", prepare_json_stats(stats))
# train and test evaluation entire dataset
stats = utils.log_accuracy_har_v2(maml.net, my_experiment, iterator_train_complete, device, writer, step, args['labels'], 'Train', args)
my_experiment.add_result("Train Complete", prepare_json_stats(stats))
stats = utils.log_accuracy_har_v2(maml.net, my_experiment, iterator_test_complete, device, writer, step,args['labels'], 'Test', args)
my_experiment.add_result("Test Complete", prepare_json_stats(stats))
torch.save(maml.net, my_experiment.path + "learner.model")
my_experiment.store_json()
# plotting graphics with stats
if args['plot']:
arguments_list = [args['plot_file'], "--path", os.path.abspath(my_experiment.path)+'/']
print("Running offline plotting.")
try:
result = subprocess.run(python_command + arguments_list, check=True, capture_output=False, text=True)
print("Command output:", result.stdout)
except subprocess.CalledProcessError as e:
print("Error occurred:", e)
print("Command output (if available):", e.stdout)
print("Command error (if available):", e.stderr)
else:
print("plotting execution completed successfully.")
if torch.cuda.is_available():
torch.cuda.empty_cache()
if __name__ == '__main__':
main()