-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathreport.py
348 lines (307 loc) · 12 KB
/
report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
"""Result for an ELAPS:Experiment."""
from __future__ import division
from math import sqrt
from collections import Iterable
from copy import deepcopy
from elaps import signature
from elaps.experiment import Experiment
stat_funs = {
"min": min,
"med": lambda l: (sum(sorted(l)[((len(l) - 1) // 2):(len(l) // 2 + 1)]) /
(2 - len(l) % 2)),
"max": max,
"avg": lambda l: sum(l) / len(l),
"std": lambda l: sqrt(max(sum(x ** 2 for x in l) / len(l) -
(sum(l) / len(l)) ** 2, 0)),
"all": lambda l: l,
None: lambda l: l
}
def apply_stat(stat, data):
"""Apply a statistic to the data."""
if stat in stat_funs:
# named
stat = stat_funs[stat]
elif hasattr(stat, "__call__"):
# function
pass
else:
# unknown
raise Exception("stat is of unknown format")
if isinstance(data, dict):
# return a dict
return dict((key, apply_stat(stat, values))
for key, values in data.items())
if isinstance(data, Iterable):
# apply to list
return stat(list(data))
# apply to single value
return stat([data])
class Report(object):
"""ELAPS:Report, result of an ELAPS:Experiment."""
def __init__(self, experiment, rawdata, fulldata=None, data=None):
"""Initialize report."""
if not isinstance(experiment, Experiment):
raise TypeError("first argument must be Experiment (not %s)" %
type(experiment).__name__)
self.experiment = experiment
self.first_repetitions_discarded = None
try:
self.rawdata = tuple(map(tuple, rawdata))
except:
raise TypeError("invalid rawdata format")
if fulldata:
self.fulldata = fulldata
else:
self.fulldata_fromraw()
if data:
self.data = data
else:
self.data_fromfull()
def fulldata_fromraw(self):
"""Initialize fulldata from rawdata.
Structure of fulldata (no parallelism):
-> dict[range_value | None]
-> tuple[rep]
-> dict[sumrange_value | None]
-> tuple[callid]
-> tuple[counterid]
Structure of fulldata (calls_parallel):
-> dict[range_value | None]
-> tuple[rep]
-> dict[sumrange_value | None]
-> tuple[counterid]
Structure of fulldata (sumrange_parallel):
-> dict[range_value | None]
-> tuple[rep]
-> tuple[counterid]
"""
ex = self.experiment
self.error = False
self.truncated = False
def getints(count, iterator=iter(self.rawdata)):
try:
values = next(iterator)
except StopIteration:
self.truncated = True
return None
try:
if (all(isinstance(value, int) for value in values) and
len(values) == count):
return tuple(values)
except:
pass
self.error = True
return getints(count)
self.starttime = None
values = getints(1)
if values is not None:
self.starttime = values[0]
nvalues = len(ex.papi_counters) + 1
def sumrange_fdata(range_val):
"""Evaluate data for the sumrange."""
if ex.sumrange_parallel:
# only one result per range_val
return getints(nvalues) or None
# results for each sumrange iteration
fdata = {}
for sumrange_val in ex.sumrange_vals_at(range_val):
if ex.calls_parallel:
# only one result per sumrange
values = getints(nvalues)
if values:
fdata[sumrange_val] = values
continue
# results for each call
sumrange_val_fdata = []
for call in ex.calls:
# one result per call
values = getints(nvalues)
if values:
sumrange_val_fdata.append(values)
if sumrange_val_fdata:
fdata[sumrange_val] = tuple(sumrange_val_fdata)
return fdata
# full structured data
self.fulldata = {}
if ex.shuffle:
fulldata = {k: [] for k in ex.range_vals}
for rep in range(ex.nreps_at(None)):
for range_val in ex.range_vals:
range_val_fdata = sumrange_fdata(range_val)
if range_val_fdata:
fulldata[range_val].append(range_val_fdata)
self.fulldata = {k: tuple(v) for k, v in fulldata.iteritems()}
else:
for range_val in ex.range_vals:
# results for each repetition
range_val_fdata = []
for rep in range(ex.nreps_at(range_val)):
rep_fdata = sumrange_fdata(range_val)
if rep_fdata:
range_val_fdata.append(rep_fdata)
if range_val_fdata:
self.fulldata[range_val] = tuple(range_val_fdata)
self.endtime = None
values = getints(1)
if values is not None:
self.endtime = values[0]
def data_fromfull(self):
"""Initialize data from fulldata.
Structure of data (no parallelism):
-> dict[range_val]
-> tuple[rep]
-> list[call]
-> dict[counter]
Structure of data (calls_parallel or sumrange_parallel):
-> dict[range_val]
-> tuple[rep]
-> dict[counter]
"""
ex = self.experiment
counters = map(intern, ["cycles"] + ex.papi_counters)
# reduced data
self.data = {}
for range_val in ex.range_vals:
# results for each range value
if range_val not in self.fulldata:
# missing full range_val data
continue
range_val_fdata = self.fulldata[range_val]
# flops evaluation
flops = len(ex.calls) * [0]
for sumrange_val in ex.sumrange_vals_at(range_val):
for callid, call in enumerate(ex.calls):
if flops[callid] is None:
continue
if not isinstance(call, signature.Call):
flops[callid] = None
continue
call_flops = next(ex.ranges_eval(
call.flops(), range_val, sumrange_val
))
if call_flops is None:
flops[callid] = None
else:
flops[callid] += call_flops
# get repetition data
range_val_data = []
for rep, rep_fdata in enumerate(range_val_fdata):
# results for each repetition
if ex.sumrange_parallel:
# one result per repetition
rep_data = dict(zip(counters, rep_fdata))
if all(f is not None for f in flops):
rep_data[intern("flops")] = sum(flops)
elif ex.calls_parallel:
# one result per sumrange iteration
rep_data = dict(zip(counters,
map(sum, zip(*rep_fdata.values())))
)
if all(f is not None for f in flops):
rep_data[intern("flops")] = sum(flops)
else:
# one result per call
rep_data = tuple(dict((c, 0) for c in counters)
for call in ex.calls)
for sumrange_val_fdata in rep_fdata.values():
for callid, call_fdata in enumerate(
sumrange_val_fdata
):
for counter, val in zip(counters, call_fdata):
rep_data[callid][counter] += val
for callid in range(len(ex.calls)):
if flops[callid] is not None:
rep_data[callid][intern("flops")] = flops[callid]
range_val_data.append(rep_data)
self.data[range_val] = tuple(range_val_data)
def __repr__(self):
"""Python parsable representation."""
return "%s(%r, %r)" % (type(self).__name__, self.experiment,
self.rawdata)
def copy(self):
"""Generate a copy."""
return Report(self.experiment, self.rawdata, self.fulldata, self.data)
def evaluate(self, callselector, metric, stat=None):
"""Evaluate the report."""
ex = self.experiment
# set selector from callselector
if callselector is None:
# all calls
if ex.sumrange_parallel or ex.calls_parallel:
def callselector(x):
return x
else:
callselector = range(len(ex.calls))
elif isinstance(callselector, int):
# callid
callselector = [callselector]
if isinstance(callselector, list):
# list of callids
def selector(data):
if any(data[v] is None for v in callselector):
return None
return sum(data[v] for v in callselector)
elif hasattr(callselector, "__call__"):
# function
selector = callselector
else:
# unknown
raise Exception("callselector is of unknown format")
# set stat
if stat in stat_funs:
# named stat
stat = stat_funs[stat]
elif hasattr(stat, "__call__"):
# function
pass
else:
# unknown
raise Exception("stat is of unknown format")
result = {}
for range_val, range_val_data in self.data.items():
range_val_result = []
# set up nthreads
nthreads = ex.nthreads_at(range_val)
if ex.sumrange_parallel:
nthreads *= len(ex.sumrange_vals_at(range_val))
elif ex.calls_parallel:
nthreads *= len(ex.calls)
nthreads = min(nthreads, ex.sampler["nt_max"])
# compute results
for rep, rep_data in enumerate(range_val_data):
if not (ex.sumrange_parallel or ex.calls_parallel):
rep_data = dict(
(k, [call_data[k] if k in call_data else None
for call_data in rep_data])
for k in rep_data[0]
)
try:
selector_data = dict((k, selector(v))
for k, v in rep_data.items())
metric_val = metric(
selector_data, experiment=ex, selector=selector,
nthreads=nthreads
)
except:
continue
if metric_val is not None:
range_val_result.append(metric_val)
if range_val_result:
result[range_val] = stat(range_val_result)
return result
def discard_first_repetitions(self):
"""Discard the first repetitions."""
if self.first_repetitions_discarded:
return self.first_repetitions_discarded
report = self.copy()
nreps = self.experiment.nreps
fulldata = {}
for range_val, range_val_data in self.fulldata.iteritems():
if len(range_val_data) > 1:
# do not take away last one
range_val_data = range_val_data[1:]
fulldata[range_val] = range_val_data
report.fulldata = fulldata
report.data_fromfull()
self.first_repetitions_discarded = report
return report