-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain_resnet_backbone.py
156 lines (137 loc) · 4.78 KB
/
train_resnet_backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
os.environ["OMP_NUM_THREADS"] = "6" # export OMP_NUM_THREADS=4
os.environ["OPENBLAS_NUM_THREADS"] = "6" # export OPENBLAS_NUM_THREADS=4
os.environ["MKL_NUM_THREADS"] = "6" # export MKL_NUM_THREADS=6
os.environ["VECLIB_MAXIMUM_THREADS"] = "6" # export VECLIB_MAXIMUM_THREADS=4
os.environ["NUMEXPR_NUM_THREADS"] = "6" # export NUMEXPR_NUM_THREADS=6
import random
import wandb
import numpy as np
import torch
from dfc_dataset import DFCDataset
from resnet_simclr import DoubleResNetSimCLR
from simclr_double_backbone import SimCLRDoubleBackbone
# os.environ['WANDB_MODE'] = 'offline'
wandb.login()
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu:0")
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu:0")
run = wandb.init(
project="simclr-double-backbone",
config={
"epochs": 201,
"learning_rate": 0.00003,
"batch_size": 200,
"seed": 42,
"num_classes": 8,
"dataloader_workers": 8,
# "train_dir" : "/netscratch/lscheibenreif/grss-dfc-20",
# "train_mode" : "test",
"train_dir": "/ds2/remote_sensing/sen12ms",
"train_mode": "sen12ms",
"val_dir": "/netscratch/lscheibenreif/grss-dfc-20",
"val_mode": "validation",
"clip_sample_values": True,
"transforms": None,
"train_used_data_fraction": 1,
"s1_input_channels": 2,
"s2_input_channels": 13,
"learning_rate_schedule": {
100: 0.1
}, # {50 : 0.1} at epoch `key` multiply lr by `value`
"image_px_size": 128,
"cover_all_parts_validation": True, # take image_px_size crops s.t. one epoch covers every pixel of every scene
"cover_all_parts_train": False, # take image_px_size crops at random offsets
"balanced_classes_train": False, # take crops from observations from small classes more frequently
"balanced_classes_validation": False,
"target": "dfc_label", # "lc_label",
###### simclr specific parameters #####
"arch": "resnet50",
"weight_decay": 1e-4,
"fp16_precision": True,
"out_dim": 128,
"temperature": 0.07,
"n_views": 2, # only supported number
"device": device,
"disable_cuda": False,
"log_every_n_steps": 1000,
"use_logging": False,
},
)
config = wandb.config
config["run_name"] = run.name
# Input sizes don't change
torch.backends.cudnn.benchmark = True
# Ensure deterministic behavior
# torch.backends.cudnn.deterministic = True
random.seed(config.seed)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
train_dataset = DFCDataset(
config.train_dir,
mode=config.train_mode,
transforms=config.transforms,
clip_sample_values=config.clip_sample_values,
used_data_fraction=config.train_used_data_fraction,
image_px_size=config.image_px_size,
cover_all_parts=config.cover_all_parts_train,
balanced_classes=config.balanced_classes_train,
)
val_dataset = DFCDataset(
config.val_dir,
mode=config.val_mode,
transforms=config.transforms,
clip_sample_values=config.clip_sample_values,
image_px_size=config.image_px_size,
cover_all_parts=config.cover_all_parts_validation,
balanced_classes=config.balanced_classes_validation,
)
# train_dataset = DFCDataset(config.train_dir, mode=config.train_mode, transforms=config.transforms, clip_sample_values=config.clip_sample_values, used_data_fraction=config.train_used_data_fraction)
# val_dataset = DFCDataset(config.val_dir, mode=config.val_mode, transforms=config.transforms, clip_sample_values=config.clip_sample_values)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=config.batch_size,
shuffle=True,
pin_memory=True,
num_workers=config.dataloader_workers,
drop_last=True,
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=config.batch_size,
shuffle=False,
num_workers=config.dataloader_workers,
)
model = DoubleResNetSimCLR(base_model=config.arch, out_dim=config.out_dim)
model.backbone1.conv1 = torch.nn.Conv2d(
config.s1_input_channels,
64,
kernel_size=(7, 7),
stride=(2, 2),
padding=(3, 3),
bias=False,
)
model.backbone2.conv1 = torch.nn.Conv2d(
config.s2_input_channels,
64,
kernel_size=(7, 7),
stride=(2, 2),
padding=(3, 3),
bias=False,
)
optimizer = torch.optim.Adam(
model.parameters(), config.learning_rate, weight_decay=config.weight_decay
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=len(train_loader), eta_min=0, last_epoch=-1
)
simclr = SimCLRDoubleBackbone(
model=model, optimizer=optimizer, scheduler=scheduler, args=config
)
s = simclr.train(train_loader)