-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
312 lines (272 loc) · 8.78 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import argparse
import random
import numpy as np
import torch
import torch.optim as optim
import lightning.pytorch as pl
from lightning.pytorch.loggers import WandbLogger
import datasets
from models.vit import ViT, MViT, resize_positional_embedding_
from models.vision_transformers import VisionTransformers
TARGET_TASK_MAP = {
"dfc": "multi-label",
}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def parse_args():
parser = argparse.ArgumentParser()
# Parameters
parser.add_argument(
"--train_batch_size",
default=32,
type=int,
help="Total batch size for training.",
)
parser.add_argument(
"--eval_batch_size", default=32, type=int, help="Total batch size for eval."
)
parser.add_argument("--num_devices", default=1, type=int, help="Number of GPU")
parser.add_argument("--device", default="gpu", type=str, help="gpu or cpu")
parser.add_argument(
"--learning_rate",
default=3e-2,
type=float,
help="The initial learning rate for SGD.",
)
parser.add_argument(
"--num_epochs",
default=20,
type=int,
help="Total number of training epochs to perform.",
)
parser.add_argument("--depth", default=12, type=int, help="Total number of blocks.")
parser.add_argument("--patch_size", default=12, type=int, help="Patch Size.")
parser.add_argument("--num_classes", default=8, type=int, help="Number of classes")
parser.add_argument(
"--num_classes_ft", default=8, type=int, help="Number of classes finetuned"
)
parser.add_argument("--num_heads", default=16, type=int, help="Number of heads")
parser.add_argument(
"--accumulate_grad",
default=1,
type=int,
help="Accumulate gradient every N batches",
)
parser.add_argument("--seed", default=42, type=int, help="Seed")
parser.add_argument(
"--num_channels", default=13, type=int, help="Number of channels"
)
parser.add_argument("--dataset", default="dfc", type=str, help="Dataset Selected")
parser.add_argument("--opt", default="adamw", type=str, help="Optimizer")
parser.add_argument("--mult", default=1, type=int, help="Multiplication Factor")
parser.add_argument("--warmup", default=10, type=int, help="Warmup epochs")
parser.add_argument("--pr_rate", default=0.2, type=float, help="Pruning coef")
parser.add_argument(
"--arch",
default="vit",
type=str,
help="Architecture desired - Vit, DeepViT etc.",
)
parser.add_argument("--imgsize", nargs="+", type=int)
parser.add_argument("--prune", action="store_true")
parser.add_argument("--multimodal", action="store_true")
parser.add_argument("--lr_scheduler", action="store_true")
parser.add_argument("--pretrained", action="store_true")
return parser.parse_args()
def setup_logger(
dataset,
arch,
patch_size,
batch_size,
depth,
learning_rate,
prune,
pr_rate,
):
# initialize weightts and biases
name = "{}/{}_arch_{}_patch_{}_bs_{}_depth_{}_lr_{}_prune_{}_pr_rate_{}".format(
dataset,
dataset,
arch,
patch_size,
batch_size,
depth,
learning_rate,
prune,
pr_rate,
)
wandb = WandbLogger(project="ViT_pruning", entity="", name=name)
return wandb
def setup_model(
arch,
imgsize,
num_classes,
depth,
patch_size,
num_heads,
prune,
num_channels,
pr_rate,
pretrained,
multimodal,
):
if arch == "vit":
if multimodal:
model = MViT(
image_size=tuple(imgsize),
patch_size=patch_size,
num_classes=num_classes,
dim=1024,
depth=depth,
heads=num_heads,
mlp_dim=2048,
device=device,
m1_channels=2,
m2_channels=13,
prune=prune,
dropout=0.0,
emb_dropout=0.0,
l0_penalty=pr_rate,
multimodal=multimodal,
)
else:
model = ViT(
image_size=tuple(imgsize),
patch_size=patch_size,
num_classes=num_classes,
dim=1024,
depth=depth,
heads=num_heads,
mlp_dim=2048,
device=device,
prune=prune,
channels=num_channels,
dropout=0.0,
emb_dropout=0.0,
l0_penalty=pr_rate,
multimodal=multimodal,
)
else:
print("Architecture not yet supported")
if pretrained:
state_dict = torch.load(
"checkpoints/pretrained_model.pth",
map_location="cpu",
)
posemb = state_dict["pos_embedding"]
posemb_new = model.state_dict()["pos_embedding"]
state_dict["pos_embedding"] = resize_positional_embedding_(
posemb=posemb, posemb_new=posemb_new
)
# Modifications to load partial state dict
expected_missing_keys = []
expected_missing_keys += [
"to_patch_embedding.1.weight",
"to_patch_embedding.1.bias",
]
expected_missing_keys += ["mlp_head.1.weight", "mlp_head.1.bias"]
for key in expected_missing_keys:
state_dict.pop(key)
model.load_state_dict(state_dict, strict=False)
return model
def create_dataset(dataset, mult, imgsize, train_batch_size, eval_batch_size):
if dataset == "dfc":
data_module = datasets.dfc.DFCDataModule()
data_module.setup(mult, train_batch_size, eval_batch_size)
elif dataset == "cityscapes":
data_module = datasets.cityscapes.CityscapesDataModule()
data_module.setup(mult, imgsize, train_batch_size, eval_batch_size)
else:
print("The dataset doesn't exist.")
return
return data_module
def setup_criterion_optimizer_scheduler(
dataset, opt, learning_rate, lr_scheduler, model
):
if TARGET_TASK_MAP[dataset] == "single-label":
criterion = torch.nn.CrossEntropyLoss().to(device)
elif TARGET_TASK_MAP[dataset] == "multi-label":
criterion = torch.nn.BCELoss(reduction="mean").to(device)
else:
raise ValueError("Invalid target specified")
if opt == "adam":
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
elif opt == "adamw":
optimizer = optim.AdamW(model.parameters(), betas=(0.9, 0.95), lr=learning_rate)
elif opt == "sgd":
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
else:
raise ValueError("Invalid optimizer specified")
scheduler = None
if lr_scheduler:
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=300)
return criterion, optimizer, scheduler
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main():
args = parse_args()
pl.seed_everything(args.seed)
# set_seed(args.seed)
# Setup wandb logger
wandb_logger = setup_logger(
args.dataset,
args.arch,
args.patch_size,
args.train_batch_size,
args.depth,
args.learning_rate,
args.prune,
args.pr_rate,
)
model = setup_model(
args.arch,
args.imgsize,
args.num_classes,
args.depth,
args.patch_size,
args.num_heads,
args.prune,
args.num_channels,
args.pr_rate,
args.pretrained,
args.multimodal,
)
criterion, optimizer, scheduler = setup_criterion_optimizer_scheduler(
args.dataset, args.opt, args.learning_rate, args.lr_scheduler, model
)
model_module = VisionTransformers(
model, criterion, optimizer, scheduler, args.prune
)
data_module = create_dataset(
args.dataset,
args.mult,
args.imgsize,
args.train_batch_size,
args.eval_batch_size,
)
trainer = pl.Trainer(
accelerator=args.device,
devices=args.num_devices,
max_epochs=args.num_epochs,
log_every_n_steps=args.accumulate_grad,
accumulate_grad_batches=args.accumulate_grad,
logger=wandb_logger,
)
if trainer.global_rank == 0:
wandb_logger.experiment.config.update(
{
"learning_rate": args.learning_rate,
"epochs": args.num_epochs,
"batch_size": args.train_batch_size,
"depth": args.depth,
"patch_size": args.patch_size,
"arch": args.arch,
}
)
trainer.fit(
model_module, data_module.train_dataloader(), data_module.val_dataloader()
)
if __name__ == "__main__":
main()