forked from tzhuan/ntu-thesis
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathintroduction.tex
84 lines (74 loc) · 2.92 KB
/
introduction.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
\chapter{Introduction}
\label{c:intro}
自動中英文對照\gRef{SLAM}。沒有縮寫用\gRefNA{monocular}
Attention plays an important role in human vision. For example, when
we look at an image, our eye movements comprise a succession of {\em
fixations} (repetitive positioning of eyes to parts of the image)
and {\em saccades} (rapid eye jump). Those parts of the image that
cause eye fixations and capture primary attention are called {\em
regions of interest} (ROIs). Studies in visual attention and eye
movement have shown that humans generally only attend to a few ROIs.
Detecting these visually attentive regions in images is challenging
but useful in many multimedia applications, such as automatic
thumbnail cropping, object recognition, content-based image
retrieval, adaptive image compression and automatic browsing in
small-screen devices.\cite{vinet1989universal}
\begin{equation} \label{eq:01}
\begin{split}
A & = \frac{\pi r^2}{2} \\
& = \frac{1}{2} \pi r^2
\end{split}
\end{equation}
Many algorithms have 公式\ref{eq:01} been proposed for automatic ROI detection in
images. Unfortunately, these methods were often evaluated only on
specific and small data sets that are not publicly available. The
lack of published {\em benchmarks} makes experiments non-repeatable
and quantitative evaluation difficult. However, as recommended by
the latest ACM SIGMM retreat, repeatable experiments using published
benchmarks are important for advancing the multimedia research
field~\cite{Rowe:2005:ASR}.
\begin{figure}
\centering
\includegraphics[width=0.45\textwidth]{kl}
\caption{kl-distance\cite{Rowe:2005:ASR}}
\label{kl}
\end{figure}
\begin{table}[t]
\begin{center}
\begin{tabular}{lcc}
\hline
& {\small Itti's method} & {\small Fuzzy growing} \\
\hline
{\small Precision} & 0.4475 & 0.4506 \\
{\small Recall} & 0.5515 & 0.5542 \\
\hline
\end{tabular}
\caption[Evaluation of FOA sets]{\small Evaluation of FOA sets. } \label{t:FOA}
\end{center}
\end{table}
%------------------------------------------------------------------------------
\begin{figure}[p]
\begin{minipage}{0.5\textwidth} %% {0.18\textwidth}
\centerline{\includegraphics[width=1\textwidth]{kl}}
\centerline{(a)01}
\end{minipage}
\hfill
\begin{minipage}{0.5\textwidth} %% {0.18\textwidth}
\centerline{\includegraphics[width=1\textwidth]{kl}}
\centerline{(c)01}
\end{minipage}
\vfill
\begin{minipage}{0.5\textwidth} %% {0.18\textwidth}
\centerline{\includegraphics[width=1\textwidth]{kl}}
\centerline{(b)04}
\end{minipage}
\hfill
\begin{minipage}{0.5\textwidth} %% {0.18\textwidth}
\centerline{\includegraphics[width=1\textwidth]{kl}}
\centerline{(d)04}
\end{minipage}
\captionsetup{justification=centering}
\caption[多張圖片]{多張圖片\\ (a)-(b)說明 \\ (c)-(d)說明文字}
\label{fig:exp_own_acc}
\end{figure}
%------------------------------------------------------------------------------