-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata_preprocessing.py
319 lines (275 loc) · 15.7 KB
/
data_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import numpy as np
import time
from scipy import stats
import pandas as pd
import gc
class tick_tock:
def __init__(self, process_name, verbose=1):
self.process_name = process_name
self.verbose = verbose
def __enter__(self):
if self.verbose:
print(self.process_name + " begin ......")
self.begin_time = time.time()
def __exit__(self, type, value, traceback):
if self.verbose:
end_time = time.time()
print(self.process_name + " end ......")
print('time lapsing {0} s \n'.format(end_time - self.begin_time))
def ka_add_groupby_features_1_vs_n(df, group_columns_list, agg_dict, only_new_feature=True):
'''Create statistical columns, group by [N columns] and compute stats on [N column]
Parameters
----------
df: pandas dataframe
Features matrix
group_columns_list: list_like
List of columns you want to group with, could be multiple columns
agg_dict: python dictionary
Return
------
new pandas dataframe with original columns and new added columns
Example
-------
{real_column_name: {your_specified_new_column_name : method}}
agg_dict = {'user_id':{'prod_tot_cnts':'count'},
'reordered':{'reorder_tot_cnts_of_this_prod':'sum'},
'user_buy_product_times': {'prod_order_once':lambda x: sum(x==1),
'prod_order_more_than_once':lambda x: sum(x==2)}}
ka_add_stats_features_1_vs_n(train, ['product_id'], agg_dict)
'''
with tick_tock("add stats features"):
try:
if type(group_columns_list) == list:
pass
else:
raise TypeError(k + "should be a list")
except TypeError as e:
print(e)
raise
df_new = df.copy()
grouped = df_new.groupby(group_columns_list)
the_stats = grouped.agg(agg_dict)
the_stats.columns = the_stats.columns.droplevel(0)
the_stats.reset_index(inplace=True)
if only_new_feature:
df_new = the_stats
else:
df_new = pd.merge(left=df_new, right=the_stats, on=group_columns_list, how='left')
return df_new
IDIR = 'data/'
"""
load data
"""
print('loading prior')
priors = pd.read_csv(IDIR + 'order_products__prior.csv', dtype={
'order_id': np.int32,
'product_id': np.uint16,
'add_to_cart_order': np.int16,
'reordered': np.int8})
print('loading train')
train = pd.read_csv(IDIR + 'order_products__train.csv', dtype={
'order_id': np.int32,
'product_id': np.uint16,
'add_to_cart_order': np.int16,
'reordered': np.int8})
print('loading orders')
orders = pd.read_csv(IDIR + 'orders.csv', dtype={
'order_id': np.int32,
'user_id': np.int32,
'eval_set': 'category',
'order_number': np.int16,
'order_dow': np.int8,
'order_hour_of_day': np.int8,
'days_since_prior_order': np.float32})
print('loading products')
products = pd.read_csv(IDIR + 'products.csv', dtype={
'product_id': np.uint16,
'order_id': np.int32,
'aisle_id': 'category',
'department_id': 'category'})
products.drop('product_name',axis=1,inplace=True)
print('loading aisles.csv')
aisles = pd.read_csv(IDIR + 'aisles.csv', dtype={
'aisle_id': np.uint8,
'aisle': 'category'})
print('loading departments.csv')
departments = pd.read_csv(IDIR + 'departments.csv', dtype={
'department_id': np.uint8,
'department': 'category'})
print('loading w2v')
w2v = pd.read_csv(IDIR + 'w32.csv',dtype={#w2
'product_id': np.uint16})
products=products.merge(w2v,how='inner',on='product_id')
del w2v
gc.collect()
###
"""
product features
"""
print('computing product f')
prod_f = pd.DataFrame()
#appear in how many orders
prod_f['appearOrderCount'] = priors['order_id'].groupby(priors.product_id).count().astype(np.uint16)
#total reorder times
prod_f['reorderCount'] = priors['reordered'].groupby(priors.product_id).sum().astype(np.float32)
#reorder ratio
prod_f['reorderRatio'] = (prod_f['reorderCount']/prod_f['appearOrderCount']).astype(np.float32)
#mean and std of add_to_cart_order
prod_f['add_to_cart_orderMean']=priors['add_to_cart_order'].groupby(priors.product_id).mean().astype(np.float32)
prod_f['add_to_cart_orderStd']=priors['add_to_cart_order'].groupby(priors.product_id).std().astype(np.float32)
#temp merge
priorsXorders=priors.merge(orders,how='inner',on='order_id')
#bought by how many users
prod_f['boughtUserCount']=priorsXorders['user_id'].groupby(priorsXorders.product_id).count().astype(np.uint16)
#bought dow
prod_f['order_dowMean']=priorsXorders['order_dow'].groupby(priorsXorders.product_id).mean().astype(np.float32)
prod_f['order_dowStd']=priorsXorders['order_dow'].groupby(priorsXorders.product_id).std().astype(np.float32)
#bought time
prod_f['order_hour_of_dayMean']=priorsXorders['order_hour_of_day'].groupby(priorsXorders.product_id).mean().astype(np.float32)
prod_f['order_hour_of_dayStd']=priorsXorders['order_hour_of_day'].groupby(priorsXorders.product_id).std().astype(np.float32)
#fillna std=na as 0-->if there is only one sample, std=na
prod_f.fillna(0,inplace=True)
#recency--This is a feature which captures if the product is generally brought more in users earlier orders or later orders
maxPriorOrder=priorsXorders['order_number'].groupby(priorsXorders.user_id).max().astype(np.float32)
maxPriorOrder=maxPriorOrder.rename('userMaxPriorOrderNumber')
maxPriorOrder=pd.DataFrame(maxPriorOrder)
priorsXorders=priorsXorders.merge(maxPriorOrder,how='left',left_on='user_id',right_index=True)
priorsXorders['recency']=(priorsXorders['order_number']/priorsXorders['userMaxPriorOrderNumber']).astype(np.float32)
prod_f['recencyMean']=priorsXorders['recency'].groupby(priorsXorders.product_id).mean().astype(np.float32)
prod_f['recencyStd']=priorsXorders['recency'].groupby(priorsXorders.product_id).std().astype(np.float32)
#user who bought this product had how many orders -- userMaxPriorOrderNumber
prod_f['userMaxPriorOrderNumberMean']=priorsXorders['userMaxPriorOrderNumber'].groupby(priorsXorders.product_id).mean().astype(np.float32)
prod_f['userMaxPriorOrderNumberStd']=priorsXorders['userMaxPriorOrderNumber'].groupby(priorsXorders.product_id).std().astype(np.float32)
#fillna std=na as 0-->if there is only one sample, std=na
prod_f.fillna(0,inplace=True)
priorsXorders['_user_buy_product_times'] = priorsXorders.groupby(['user_id', 'product_id']).cumcount() + 1
tmp_group=priorsXorders['_user_buy_product_times'].groupby(priorsXorders.product_id)
# _prod_order_once:
prod_f['_prod_order_once']=tmp_group.aggregate(lambda x: sum(x==1))
# _prod_order_more_than_once:
prod_f['_prod_order_more_than_once']=tmp_group.aggregate(lambda x: sum(x==2))
#porduct in last order=0/last 2nd order=1/last 3rd order=2,...
priorsXorders['lastNOrder']=priorsXorders['userMaxPriorOrderNumber']-priorsXorders['order_number']
prod_f['apperInLastNOrderMean']=priorsXorders['lastNOrder'].groupby(priorsXorders.product_id).mean().astype(np.float32)
prod_f['apperInLastNOrderStd']=priorsXorders['lastNOrder'].groupby(priorsXorders.product_id).std().astype(np.float32)
prod_f['apperInLastNOrderMax']=priorsXorders['lastNOrder'].groupby(priorsXorders.product_id).max().astype(np.float32)
prod_f['apperInLastNOrderMin']=priorsXorders['lastNOrder'].groupby(priorsXorders.product_id).min().astype(np.float32)
#fillna std=na as 0-->if there is only one sample, std=na
prod_f.fillna(0,inplace=True)
prd=products.merge(prod_f,how='inner',left_on='product_id',right_index=True)
del prod_f
gc.collect()
"""
user features
"""
print('building user features...')
user_f=pd.DataFrame()
priorsXordersXproducts=priorsXorders.merge(products,how='inner',on='product_id')
# num of Aisle purchased from, num of Department purchased from
tmp_group=priorsXordersXproducts['aisle_id'].groupby(priorsXordersXproducts.user_id)
unique_aisle_ids=tmp_group.unique()
for i in xrange(len(unique_aisle_ids)):
unique_aisle_ids.iloc[i]=len(unique_aisle_ids.iloc[i])
user_f['uniqueAisleCount']=unique_aisle_ids
user_f['uniqueAisleCount']=user_f['uniqueAisleCount'].astype(np.int16)
user_f['freqAisle']=tmp_group.agg(lambda x: stats.mode(x)[0][0])
user_f['freqAisle']=user_f['freqAisle'].astype(np.int16)
tmp_group=priorsXordersXproducts['department_id'].groupby(priorsXordersXproducts.user_id)
unique_department_ids=tmp_group.unique()
for i in xrange(len(unique_department_ids)):
unique_department_ids.iloc[i]=len(unique_department_ids.iloc[i])
user_f['uniqueDepartmentCount']=unique_department_ids
user_f['uniqueDepartmentCount']=user_f['uniqueDepartmentCount'].astype(np.int16)
user_f['freqDepartment']=tmp_group.agg(lambda x: stats.mode(x)[0][0])
user_f['freqDepartment']=user_f['freqDepartment'].astype(np.int16)
#user total orders
user_f['_user_total_orders']=priorsXorders['order_number'].groupby(priorsXorders.user_id).max().astype(np.float32)
#_user_mean_days_since_prior_order and std
#bought time interval
user_f['days_since_prior_orderMean']=priorsXordersXproducts['days_since_prior_order'].groupby(priorsXordersXproducts.user_id).mean().astype(np.float32)
user_f['days_since_prior_orderStd']=priorsXordersXproducts['days_since_prior_order'].groupby(priorsXordersXproducts.user_id).std().astype(np.float32)
# _user_reorder_ratio
# _user_total_products
# _user_distinct_products
tmp_group=priorsXorders['product_id'].groupby(priorsXorders.user_id)
user_f['_user_total_products']=tmp_group.count()
user_f['_user_distinct_products']=tmp_group.agg(lambda x: x.nunique())
tmp_group=priorsXorders['reordered'].groupby(priorsXorders.user_id)
user_f['_user_reorder_ratio']=(priorsXorders.groupby('user_id')['reordered'].sum() /priorsXorders[priorsXorders['order_number'] > 1].groupby('user_id')['order_number'].count()).rename('_user_reorder_ratio')#tmp_group.agg(lambda x: sum(priorsXorders.loc[x.index,'reordered']==1)/sum(priorsXorders.loc[x.index,'order_number'] > 1))
#backet size
order_size=priorsXordersXproducts['product_id'].groupby(priorsXordersXproducts.order_id).count().astype(np.uint8)
order_size=order_size.rename('order_size')
order_size=pd.DataFrame(order_size)
priorsXordersXproducts=priorsXordersXproducts.merge(order_size,how='left',left_on='order_id',right_index=True)
tmp_group=priorsXordersXproducts['order_size'].groupby(priorsXordersXproducts.user_id)
user_f['order_size_mean']=tmp_group.mean()
user_f['order_size_std']=tmp_group.std()
user_f['order_size_max']=tmp_group.max()
user_f['order_size_min']=tmp_group.min()
us = orders[orders.eval_set != "prior"][['user_id', 'order_id', 'eval_set', 'days_since_prior_order']]
us.rename(index=str, columns={'days_since_prior_order': 'time_since_last_order'}, inplace=True)
user_f = user_f.merge(us, how='inner',left_index=True,right_on='user_id')
"""
user*product
"""
# _up_order_count
# _up_first_order_number
# _up_last_order_number
# _up_average_cart_position
agg_dict_4 = {'order_number':{'_up_order_count': 'count',
'_up_first_order_number': 'min',
'_up_last_order_number':'max',
'_up_order_past_appears_mean':'mean',###user purchased this product in which past orders-mean
'_up_order_past_appears_std':'std'},
'add_to_cart_order':{'_up_average_cart_position': 'mean',
'_up_std_cart_position': 'std'}}
data = ka_add_groupby_features_1_vs_n(df=priorsXorders, group_columns_list=['user_id', 'product_id'],
agg_dict=agg_dict_4)
data['_up_order_past_appears_std'].fillna(0,inplace=True)
data['_up_std_cart_position'].fillna(0,inplace=True)#for _up_std_cart_position
data = data.merge(prd, how='inner', on='product_id').merge(user_f, how='inner', on='user_id')
data['_up_order_rate'] = data._up_order_count / data._user_total_orders
data['_up_order_since_last_order'] = data._user_total_orders - data._up_last_order_number
data['_up_order_since_last_order_normalize']=data['_up_order_since_last_order']/data['_user_total_orders']
data['_up_order_past_appears_mean_normalize']=data['_up_order_past_appears_mean']/data._up_last_order_number
data['_up_order_past_appears_std_normalize']=data['_up_order_past_appears_std']/data._up_last_order_number
data['_up_order_rate_since_first_order'] = data._up_order_count / (data._user_total_orders - data._up_first_order_number + 1)
## user purchased this product in which past orders--interval
tmp_group=priorsXorders['order_number'].groupby([priorsXorders.user_id,priorsXorders.product_id])
_up_order_past_appears_interval_mean=tmp_group.agg(lambda x: np.mean(np.diff(np.sort(x))) if len(x)>1 else -1)
_up_order_past_appears_interval_std=tmp_group.agg(lambda x: np.std(np.diff(np.sort(x))) if len(x)>1 else 0)
tmp_df=pd.DataFrame(data={'_up_order_past_appears_interval_mean':_up_order_past_appears_interval_mean,
'_up_order_past_appears_interval_std':_up_order_past_appears_interval_std})
data=data.merge(right=tmp_df,left_on=[data.user_id,data.product_id],how='left',right_index=True)
data['_up_order_past_appears_interval_mean'].loc[data['_up_order_past_appears_interval_mean']==-1]=data['_user_total_orders'].loc[data['_up_order_past_appears_interval_mean']==-1]
data['_up_order_past_appears_interval_mean_normalize']=data['_up_order_past_appears_interval_mean']/data['_user_total_orders']
data['_up_order_past_appears_interval_std_normalize']=data['_up_order_past_appears_interval_std']/data['_user_total_orders']
data['_up_order_expect_days_to_order']=data['_up_order_past_appears_interval_mean']-data['_up_order_since_last_order']
data['_up_order_expect_days_to_order_normalize']=data['_up_order_expect_days_to_order']/data._user_total_orders
#last order=0/last 2nd order=1/last 3rd order=2,...---cannot use. prior orders do not appear in the training data
#lastNOrder=priorsXorders['lastNOrder'].groupby(priorsXorders.order_id).min().astype(np.uint16)#they all duplicates min=max=mean
#lastNOrder=pd.DataFrame(lastNOrder)
#data1=data.merge(lastNOrder,how='left',left_on='order_id',right_index=True)
# add user_id to train set
train = train.merge(right=orders[['order_id', 'user_id']], how='left', on='order_id')
data = data.merge(train[['user_id', 'product_id', 'reordered']], on=['user_id', 'product_id'], how='left')
train = data.loc[data.eval_set == "train",:]
#train.drop(['eval_set', 'user_id', 'product_id', 'order_id'], axis=1, inplace=True)
train.loc[:, 'reordered'] = train.reordered.fillna(0)
X_test = data.loc[data.eval_set == "test",:]
X_train=train.drop('reordered',axis=1)#X_train=train[train.columns.difference(['reordered'])]#.difference will shuffle columns
y_train=train.reordered
#del agg_dict_4,aisles,data,departments,maxPriorOrder,order_size,orders,prd,priors,priorsXorders,priorsXordersXproducts,products,tmp_df,train,unique_aisle_ids,unique_department_ids,us,user_f
#gc.collect()
#from six.moves import cPickle
#f = open('processed_data_w32.save', 'wb')
#cPickle.dump(X_train, f, protocol=cPickle.HIGHEST_PROTOCOL)
#cPickle.dump(y_train, f, protocol=cPickle.HIGHEST_PROTOCOL)
#cPickle.dump(X_test, f, protocol=cPickle.HIGHEST_PROTOCOL)
#f.close()
#X_train.to_pickle("X_train_w32.pkl")
#y_train.to_pickle("y_train_w32.pkl")
#X_test.to_pickle("X_test_w32.pkl")
X_train.to_hdf("X_train_w32.h5","X_train",mode="w",format="table")
y_train.to_hdf("y_train_w32.h5","y_train",mode="w",format="table")
X_test.to_hdf("X_test_w32.h5","X_test",mode="w",format="table")