-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
422 lines (347 loc) · 17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
from __future__ import division
import argparse
import math
import os
import random
import shutil
import sys
import time
import pandas as pd
import numpy
from scipy.io import savemat
from tqdm import tqdm
from datetime import datetime
from matplotlib import pyplot as plt
from torch.nn.utils import clip_grad_norm_
from models.SimpleViT import get_vit_model
import torch
sys.path.append(".")
import numpy as np
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.distributed.algorithms import ddp_comm_hooks
import communication_hook.hooks_JointSQ as myhooks
import models
from data.datasets import get_dataloader, get_ucml_dataloader, get_nwpu_dataloader
from optimizer.lamb import Lamb
from utils import AverageMeter, RecorderMeter, print_log
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__") and callable(models.__dict__[name]))
print(model_names)
def set_global_parm() -> None:
global arg_global
arg_global = get_args()
global device_to_use
device_to_use = int(dist.get_rank())
print('===>>> use device {} <<<==='.format(device_to_use))
global with_grad_compressed
with_grad_compressed = arg_global.with_gc
global with_params_sync
with_params_sync = arg_global.params_sync
def get_args() -> argparse.Namespace:
"""parser args"""
parser = argparse.ArgumentParser(description='Trains with compression',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Dataset options
parser.add_argument('--data_dir', type=str, help='Path to dataset', default='./data/cifar')
parser.add_argument('--dataset', type=str, metavar='NAME', choices=['CIFAR10', 'CIFAR100', 'ImageNet', 'UCML', 'NWPU'],
help='Choose between CIFAR10/100 and ImageNet.', default='CIFAR10')
# DDP input
parser.add_argument('--local_rank', type=str, default='0')
parser.add_argument('--seed', type=str, default='1234')
parser.add_argument('--nproc_per_node', type=str, default='1')
parser.add_argument('--nnode', type=str, default='1')
parser.add_argument('--node_rank', type=str, default='0')
parser.add_argument('--master_addr', type=str, default='127.0.0.1')
parser.add_argument('--master_port', type=str, default='12345')
# The path of files to save
parser.add_argument('--save_dir', type=str, default='./result/', help='Folder to save checkpoints and log.')
parser.add_argument('--save_model', action='store_true', default=False, help='save model params')
# Model options
parser.add_argument('--arch', type=str, metavar='ARCH', default='resnet20', choices=model_names,
help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet20)')
# Optimization options
parser.add_argument('--epochs', type=int, default=100, help='Number of epochs to train.')
parser.add_argument('--batch_size', type=int, default=128, help='Batch size.')
parser.add_argument('--lr', type=float, default=0.1, help='The Initial Learning Rate.')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--decay', type=float, default=0.0001, help='Weight decay (L2 penalty).')
# Checkpoints
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set',
default=False)
# Acceleration
parser.add_argument('--ngpu', type=int, default=1, help='0 = CPU.')
parser.add_argument('--workers', type=int, default=4, help='number of data loading workers (default: 4)')
# Random seed
parser.add_argument('--manualSeed', type=int, help='manual seed', default=None)
parser.add_argument('--logSeed', type=str, help='log seed', default='test')
# Compress parameters
parser.add_argument('--with_gc', action='store_true', default=False, help='with grad compressed')
parser.add_argument('--params_sync', action='store_true', default=False,
help='synchronize parameters once each epoch')
# pretrain model
parser.add_argument('--use_state_dict', dest='use_state_dict', action='store_true', default=False,
help='use state dcit or not')
parser.add_argument('--use_pretrain', dest='use_pretrain', action='store_true', default=False,
help='use pre-trained model or not')
parser.add_argument('--pretrain_path', default='', type=str, help='..path of pre-trained model')
return parser.parse_args()
def set_seed(seed: any, useCuda: bool, log) -> None:
"""set seed"""
if seed is None:
seed = random.randint(0, 2 ** 32)
print_log('===>>> random seed : {}'.format(seed), log)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if useCuda:
torch.cuda.manual_seed_all(seed)
def init_logger(args):
"""Init logger"""
if not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
log = open(os.path.join(args.save_dir, 'log_rank{}_seed_{}.txt'.format(dist.get_rank(), args.logSeed)), 'w')
print_log('===>>> save path : {}'.format(args.save_dir), log)
print_log("===>>> torch version : {}".format(torch.__version__), log)
print_log("===>>> cudnn version : {}".format(torch.backends.cudnn.version()), log)
print_log("===>>> use pretrain: {}".format(args.use_pretrain), log)
if args.use_pretrain:
print_log("===>>> Pretrain path: {}".format(args.pretrain_path), log)
return log
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def validate(model, val_loader, criterion, log):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
timepoint = time.time()
model.eval()
with torch.no_grad():
for i, (input, target) in enumerate(tqdm(val_loader, desc='test', ncols=0, disable=(dist.get_rank() != 0))):
input_var = input.to(device_to_use)
target_var = target.to(device_to_use)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target_var, topk=(1, 5))
test_loss = loss.item()
losses.update(test_loss, input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - timepoint)
timepoint = time.time()
return top1.avg, losses.avg
def save_checkpoint(state, is_best, filename, bestname):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, bestname)
def sync_params(model): # Synchronize model parameters, can be set to synchronize every multiple epochs.
for _, param in enumerate(model.parameters()):
dist.all_reduce(param.data.div_(dist.get_world_size()), op=dist.ReduceOp.SUM, async_op=False)
def train_epoch(model, epoch_curr, train_sampler, train_loader, arg, criterion, optimizer, scheduler, log,
*args, **kwargs):
# global g1, g2
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
# In distributed mode, calling the set_epoch() method at the beginning of each epoch before creating the DataLoader iterator is necessary to make shuffling work properly across multiple epochs. Otherwise, the same ordering will be always used.
train_sampler.set_epoch(time.time_ns())
for step, (input, target) in enumerate(tqdm(train_loader, desc='train', ncols=0, disable=(dist.get_rank() != 0))):
# if arg.use_cuda:
input_var, target_var, model = input.to(device_to_use, non_blocking=True), \
target.to(device_to_use, non_blocking=True), \
model.to(device_to_use, non_blocking=True)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target_var, topk=(1, 5))
losses.update(loss.item(), input_var.size(0))
top1.update(prec1[0], input_var.size(0))
top5.update(prec5[0], input_var.size(0))
# compute gradient and do SGD step
loss.backward()
clip_grad_norm_(model.parameters(), max_norm=1, norm_type=2) # Gradient clipping
optimizer.step()
optimizer.zero_grad()
# Synchronize the parameters
if arg_global.params_sync and step % 100 == 0:
sync_params(model)
# adjust the learning rate
scheduler.step()
print_log('[rank: {} | epoch: {}/{} | loss: {}]'.format(dist.get_rank(), epoch_curr + 1, arg.epochs, losses.avg),
log)
def train(arg, model, optimizer, train_sampler, train_loader, criterion, val_loader, log, *args, **kwargs):
best_prec1 = 0
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max = arg.epochs)
if arg.epochs == 100:
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[30, 60], gamma=0.1)
elif arg.epochs == 500:
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, gamma=0.2, milestones=[60, 120, 160, 190])
elif arg.epochs == 200:
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[100, 150], gamma=0.1)
# with_grad_compressed = 1 means compression / with_grad_compressed = 0 means no compression
# Communication hook: Registered when loss.backward is called.
if with_grad_compressed:
ddp_comm_hooks.register_ddp_comm_hook(myhooks.DDPCommHookType.correlation_GC, model)
print_log('===>>>with_GC<<<===', log)
else:
ddp_comm_hooks.register_ddp_comm_hook(ddp_comm_hooks.DDPCommHookType.ALLREDUCE, model)
print_log('===>>>without_GC<<<===', log)
for epoch_curr in range(arg.start_epoch, arg.epochs): # 100
# train for one epoch
s_time = time.time()
train_epoch(model, epoch_curr, train_sampler, train_loader, arg, criterion, optimizer, scheduler, log)
e_time = time.time()
# Calculate test set accuracy
val_acc_2, test_loss = validate(model, val_loader, criterion, log)
# remember best prec@1 and save checkpoint
is_best = val_acc_2 > best_prec1
best_prec1 = max(val_acc_2, best_prec1)
if arg.save_model:
save_checkpoint({
'epoch': epoch_curr + 1,
'arch': arg.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best, os.path.join(arg.save_dir, 'resnet20-cifar10-gc' + str(arg.rate_gc) + '.pth'),
os.path.join(arg.save_dir,
'best.resnet20-cifar10-gc' + str(arg.manualSeed) + str(arg.rate_gc) + '.pth'))
print_log(
'\033[0;37;40m|------[rank {} on device {} | epoch: {}/{} | acc/test_top_1: {:.3f}]------|\033[0m'.format(
dist.get_rank(), device_to_use, epoch_curr + 1, arg.epochs, val_acc_2.cpu().numpy()), log)
list = [dist.get_rank(), device_to_use, epoch_curr + 1, e_time - s_time, best_prec1.cpu().numpy(),test_loss,val_acc_2.cpu().numpy()]
data = pd.DataFrame([list])
# save_path
data.to_csv('vit.csv',mode='a',header=False,index=False)
print_log(
'\033[0;31;40m|------[rank {} on device {} | epoch: {}/{} | cost: {:.3f}s | acc/test_top1_best: {:.3f}]------|\033[0m'.format(
dist.get_rank(), device_to_use, epoch_curr + 1, arg.epochs, e_time - s_time, best_prec1.cpu().numpy()),
log)
def main():
args = arg_global
args.use_cuda = args.ngpu > 0 and torch.cuda.is_available()
cudnn.benchmark = False # This can slow down training
log = init_logger(args)
state = {k: v for k, v in args._get_kwargs()}
print_log(state, log)
set_seed(args.manualSeed, args.use_cuda, log)
# Data
print_log('==>>> Preparing data..', log)
if not os.path.isdir(args.data_dir):
os.makedirs(args.data_dir)
if args.dataset == 'CIFAR10':
num_cls = 10
img_size = 32
elif args.dataset == 'CIFAR100':
num_cls = 1020
img_size = 32
elif args.dataset == 'ImageNet':
num_cls = 1000
img_size = 224
elif args.dataset == 'UCML':
num_cls = 21
img_size = 256
elif args.dataset == 'NWPU':
num_cls = 45
img_size = 256
else:
assert False, "Unknow dataset : {}".format(args.dataset)
if args.dataset == 'UCML':
train_loader, val_loader, test_loader, train_sampler = get_ucml_dataloader(args.batch_size)
elif args.dataset == 'NWPU':
train_loader, val_loader, test_loader, train_sampler = get_nwpu_dataloader(args.batch_size)
else:
train_loader, val_loader, test_loader, train_sampler = get_dataloader(img_size, args.dataset, args.data_dir,
args.batch_size, no_val=True)
# Init model
#print_log("==>>> creating model '{}'".format(args.arch), log)
# Note: Here, calling SimpleViT executes model = get_vit_model()
# For other models, execute: model = models.__dict__[args.arch](num_classes=num_cls)
# model = get_vit_model()
model = models.__dict__[args.arch](num_classes=num_cls)
print_log("==>>> model :\n {}".format(model), log)
criterion = torch.nn.CrossEntropyLoss()
if args.use_cuda:
model = model.cuda(device_to_use)
criterion = criterion.cuda(device_to_use)
if args.use_pretrain:
if os.path.isfile(args.pretrain_path):
print_log("===>>> loading pretrain model '{}'".format(args.pretrain_path), log)
else:
print("\033[1;33;40m!!! pretrain path does not exist !!!\033[0m")
pass
pretrain = torch.load(args.pretrain_path)
if args.use_state_dict:
model.load_state_dict(pretrain['state_dict'])
else:
model = pretrain['state_dict']
recorder = RecorderMeter(args.epochs)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device_to_use], output_device=device_to_use,
broadcast_buffers=False, bucket_cap_mb=25)
optimizer = torch.optim.SGD(model.parameters(), state['lr'] , momentum=state['momentum'],
weight_decay=state['decay'], nesterov=False)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print_log("===>>> loading checkpoint '{}'".format(args.resume), log)
checkpoint = torch.load(args.resume)
recorder = checkpoint['recorder']
args.start_epoch = checkpoint['epoch']
if args.use_state_dict:
model.load_state_dict(checkpoint['state_dict'])
else:
model = checkpoint['state_dict']
optimizer.load_state_dict(checkpoint['optimizer'])
print_log("===>>> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']), log)
else:
print_log("===>>> no checkpoint found at '{}'".format(args.resume), log)
else:
print_log("===>>> do not use any checkpoint for {} model <<<===".format(args.arch), log)
if args.evaluate:
time1 = time.time()
validate(model, test_loader, criterion, args.print_freq, log)
time2 = time.time()
print('function took %0.3f ms' % ((time2 - time1) * 1000.0))
return
val_acc_1, _ = validate(model, test_loader, criterion, log)
print("===>>> acc before is: %.3f %% <<<===" % val_acc_1)
# NOTE train
train(args, model, optimizer, train_sampler, train_loader, criterion, test_loader, log)
log.close()
if __name__ == "__main__":
# Set visible GPUs
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,2'
# Set the network interface used by local processes (not needed for single machine)
# os.environ['NCCL_SOCKET_IFNAME'] = 'eth1'
# DDP initialization
dist.init_process_group(
backend='nccl',
init_method='env://',
group_name='test'
)
print('===>>> DDP init successfully <<<===')
print('===>>> rank is {} <<<==='.format(dist.get_rank()))
set_global_parm()
main()