-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
157 lines (126 loc) · 4.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# import time, random, os, cv2, matplotlib, math
import numpy as np
import pandas as pd
from sklearn import metrics
from scipy import stats
from matplotlib import pyplot as plt
def print_log(print_string, log):
print("{}".format(print_string))
log.write('{}\n'.format(print_string))
log.flush()
def norm(data, lv):
data_n = (data - data.min()) / (data.max() - data.min())
data_q = np.floor(data_n * lv)
return data_q
def infor(data):
lv = 2**8
data_q = norm(data, lv)
count = np.bincount(data_q.view(np.int16))
count = np.delete(count, np.where(count==0))
p = count / len(data.reshape(-1))
h = sum(-p * np.log(p))
return h
def joint_infor(x, y):
lv = 2**8
xn = norm(x, lv)
yn = norm(y, lv)
xcount = np.bincount(xn.view(np.int16))
ycount = np.bincount(yn.view(np.int16))
je = 0
for i in range(lv):
for j in range(lv):
c = 0
for k in range(len(xn)):
if (xn[k]==i) and (yn[k]==j):
c += 1
if c != 0:
je = je - c / len(xn) * np.log(c / len(xn))
return je
def mni(x, y):
lv = 2**8
xn = norm(x, lv)
yn = norm(y, lv)
ni = metrics.mutual_info_score(xn, yn)
return ni
def correlation_coefficient(x, y, mod: str='s'):
if mod == 's':
cc = stats.spearmanr(x, y)[0]
elif mod == 'p':
cc = stats.pearsonr(x, y)[0]
else:
return 0
return cc
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class RecorderMeter(object):
"""Computes and stores the minimum loss value and its epoch index"""
def __init__(self, total_epoch):
self.reset(total_epoch)
def reset(self, total_epoch):
assert total_epoch > 0
self.total_epoch = total_epoch
self.current_epoch = 0
self.epoch_losses = np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val]
self.epoch_losses = self.epoch_losses - 1
self.epoch_accuracy= np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val]
self.epoch_accuracy= self.epoch_accuracy
def update(self, idx, train_loss, train_acc, val_loss, val_acc):
assert idx >= 0 and idx < self.total_epoch, 'total_epoch : {} , but update with the {} index'.format(self.total_epoch, idx)
self.epoch_losses [idx, 0] = train_loss
self.epoch_losses [idx, 1] = val_loss
self.epoch_accuracy[idx, 0] = train_acc
self.epoch_accuracy[idx, 1] = val_acc
self.current_epoch = idx + 1
return self.max_accuracy(False) == val_acc
def max_accuracy(self, istrain):
if self.current_epoch <= 0: return 0
if istrain: return self.epoch_accuracy[:self.current_epoch, 0].max()
else: return self.epoch_accuracy[:self.current_epoch, 1].max()
def plot_curve(self, save_path):
title = 'the accuracy/loss curve of train/val'
dpi = 80
width, height = 1200, 800
legend_fontsize = 10
scale_distance = 48.8
figsize = width / float(dpi), height / float(dpi)
fig = plt.figure(figsize=figsize)
x_axis = np.array([i for i in range(self.total_epoch)]) # epochs
y_axis = np.zeros(self.total_epoch)
plt.xlim(0, self.total_epoch)
plt.ylim(0, 100)
interval_y = 5
interval_x = 5
plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
plt.yticks(np.arange(0, 100 + interval_y, interval_y))
plt.grid()
plt.title(title, fontsize=20)
plt.xlabel('the training epoch', fontsize=16)
plt.ylabel('accuracy', fontsize=16)
y_axis[:] = self.epoch_accuracy[:, 0]
plt.plot(x_axis, y_axis, color='g', linestyle='-', label='train-accuracy', lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_accuracy[:, 1]
plt.plot(x_axis, y_axis, color='y', linestyle='-', label='valid-accuracy', lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 0]
plt.plot(x_axis, y_axis*50, color='g', linestyle=':', label='train-loss-x50', lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 1]
plt.plot(x_axis, y_axis*50, color='y', linestyle=':', label='valid-loss-x50', lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
if save_path is not None:
fig.savefig(save_path, dpi=dpi, bbox_inches='tight')
print ('---- save figure {} into {}'.format(title, save_path))
plt.close(fig)