-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
53 lines (49 loc) · 2.45 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from keras import layers
from tensorflow import keras
from keras.models import Sequential
from keras.layers import Conv2D,Dropout,Flatten,Dense,MaxPooling2D, BatchNormalization
class MyModel(keras.Model):
"""
Author: Trần Minh Hải
Model được custom với số filter tăng lên:
+ Có 4 stage, mỗi satge có 2 conv2d layers và một maxpooling layers
+ Số filter qua mỗi stage sẽ được nhân 2 lên
"""
def __init__(self, filter = 64, kernel = (3,3) , node = 64, outputs = 1):
super(MyModel, self).__init__()
self.filter = filter
self.kernel = kernel
self.node = node
self.outputs = outputs
self.stage1 = keras.Sequential([
layers.Conv2D(self.filter, kernel_size = self.kernel, activation='relu'),
layers.Conv2D(self.filter, kernel_size = self.kernel, activation='relu'),
layers.MaxPooling2D(pool_size=(2,2))
])
self.stage2 = keras.Sequential([
layers.Conv2D(self.filter*2,kernel_size = self.kernel, activation='relu') ,
layers.Conv2D(self.filter*2,kernel_size = self.kernel, activation='relu'),
layers.MaxPooling2D(pool_size=(2,2))
])
self.stage3 = keras.Sequential([
layers.Conv2D(self.filter*4,kernel_size = self.kernel, activation='relu',padding='same') ,
layers.Conv2D(self.filter*4,kernel_size = self.kernel, activation='relu', padding='same'),
layers.MaxPooling2D(pool_size=(2,2))
])
self.stage4 = keras.Sequential([
layers.Conv2D(self.filter*8,kernel_size = self.kernel, activation='relu', padding='same') ,
layers.Conv2D(self.filter*8,kernel_size = self.kernel, activation='relu', padding='same'),
layers.MaxPooling2D(pool_size=(2,2), padding='same')
])
self.outputs = keras.Sequential([
layers.Flatten(),
layers.Dense(self.node*64, activation = "relu"),
layers.Dense(self.outputs, activation = "softmax")
])
def call(self, inputs):
x = self.stage1(inputs)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.outputs(x)
return x