-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.asv
59 lines (48 loc) · 1.81 KB
/
main.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
clc; clear; close all;
% In this code, the aortic blood pressure (sig1) is estimated from radial
% blood pressure (sig2) by AR model based on two least-mean-square (LMS)
% approaches:
% 1- Offline method: all training samples are inserted into LMS equation,
% and through several iteration (epoch), the AR coefficients (w) are
% calculated.
% 2- online method: For each given input and output samples, w is computed
% iteratively. Thus the number of epoch is equal to total samples
% Note: AR order and learning rate should be adujsted manually
%
% written by: Hesam Shokouh Alaei
%
% data description==> Fs:200 Hz, length: 10 seconds
data = load('blood_pressure.mat');
sig1 = data.radial_data; % model input
sig2 = data.aortic_data; % model output
N=length(sig1)*7/10;
ts_train = sig1(1:N); % train data: 7 seconds
ts_test = sig1(N+1:end); % test data: 3 seconds
M = length(ts_test);
p = 20; % AR order
y_train = sig2(1:N-p)';
x_train = arlag(ts_train,N,p); % create lag matrix
% online least mean square
mu = 2e-4; %learning rate
w = onlinelms(x_train,y_train,mu,p); % AR parameters
% offline least mean square
% mu = 2e-7; %learning rate
% epoch = 1e4; % number of iteration
% w = batchlms(x_train,d_train,mu,p,epoch); % AR parameters
y_test = sig2(N+1:end-p)';
x_test = arlag(ts_test,M,p);
y(:,1) = x_test*w(end,:)';
rmse = sqrt(mse(y_test - y)) % root mean square error
cc = corrcoef(d_test,y) % correlation coefficient
% plot
figure(1);
t = linspace(7,10,M-p);
plot(t,d_test)
hold on
plot(t,y)
legend ('real aortic blood pressure','simulated aortic blood pressure')
grid minor
xlabel('time(s)')
ylabel('amplitude')
title('Estimation of Aortic blood pressure with AR model and online LMS') %for online mode
% title('Estimation of Aortic blood pressure with AR model and offline LMS') % for offline mode