|
| 1 | +# #!/usr/bin/env python3 |
| 2 | +import os |
| 3 | +import time |
| 4 | + |
| 5 | +import rope.GUI as GUI |
| 6 | +import rope.VideoManager as VM |
| 7 | + |
| 8 | +from insightface.app import FaceAnalysis |
| 9 | +import onnxruntime |
| 10 | +import onnx |
| 11 | + |
| 12 | +import torch |
| 13 | +from rope.external.clipseg import CLIPDensePredT |
| 14 | + |
| 15 | +import segmentation_models_pytorch as smp |
| 16 | +from collections import OrderedDict |
| 17 | +from torchvision import transforms |
| 18 | + |
| 19 | +from rope.external.model import BiSeNet |
| 20 | + |
| 21 | + |
| 22 | + |
| 23 | +def coordinator(): |
| 24 | + global gui, vm, action, frame, r_frame |
| 25 | + start = time.time() |
| 26 | + |
| 27 | + if gui.get_action_length() > 0: |
| 28 | + action.append(gui.get_action()) |
| 29 | + if vm.get_action_length() > 0: |
| 30 | + action.append(vm.get_action()) |
| 31 | +################## |
| 32 | + if vm.get_frame_length() > 0: |
| 33 | + frame.append(vm.get_frame()) |
| 34 | + |
| 35 | + if len(frame) > 0: |
| 36 | + gui.set_image(frame[0], False) |
| 37 | + gui.display_image_in_video_frame() |
| 38 | + frame.pop(0) |
| 39 | + #################### |
| 40 | + if vm.get_requested_frame_length() > 0: |
| 41 | + r_frame.append(vm.get_requested_frame()) |
| 42 | + if len(r_frame) > 0: |
| 43 | + # print ("1:", time.time()) |
| 44 | + gui.set_image(r_frame[0], True) |
| 45 | + gui.display_image_in_video_frame() |
| 46 | + r_frame=[] |
| 47 | + #################### |
| 48 | + if len(action) > 0: |
| 49 | + if action[0][0] == "load_target_video": |
| 50 | + vm.load_target_video(action[0][1]) |
| 51 | + #gui.set_slider_position(0) |
| 52 | + action.pop(0) |
| 53 | + elif action[0][0] == "play_video": |
| 54 | + vm.play_video(action[0][1]) |
| 55 | + action.pop(0) |
| 56 | + elif action[0][0] == "set_video_position": |
| 57 | + vm.get_requested_video_frame(action[0][1]) |
| 58 | + action.pop(0) |
| 59 | + elif action[0][0] == "find_faces": |
| 60 | + gui.find_faces(action[0][1]) |
| 61 | + action.pop(0) |
| 62 | + elif action[0][0] == "clear_faces": |
| 63 | + gui.clear_faces() |
| 64 | + action.pop(0) |
| 65 | + elif action[0][0] == "swap": |
| 66 | + if not vm.swapper_model: |
| 67 | + gui.set_status("loading Swapper") |
| 68 | + swapper, emap = load_swapper_model() |
| 69 | + vm.set_swapper_model(swapper, emap) |
| 70 | + gui.set_status("Swapper loaded!") |
| 71 | + vm.swap_set(action[0][1]) |
| 72 | + action.pop(0) |
| 73 | + elif action[0][0] == "source_embeddings": |
| 74 | + vm.load_source_embeddings(action[0][1]) |
| 75 | + action.pop(0) |
| 76 | + elif action[0][0] == "target_faces": |
| 77 | + vm.found_faces_assignments = action[0][1] |
| 78 | + action.pop(0) |
| 79 | + |
| 80 | + |
| 81 | + |
| 82 | + |
| 83 | + elif action [0][0] == "num_threads": |
| 84 | + vm.num_threads = action[0][1] |
| 85 | + action.pop(0) |
| 86 | + |
| 87 | + |
| 88 | + |
| 89 | + elif action [0][0] == "pos_thresh": |
| 90 | + vm.pos_thresh = action[0][1] |
| 91 | + action.pop(0) |
| 92 | + elif action [0][0] == "neg_thresh": |
| 93 | + vm.neg_thresh = action[0][1] |
| 94 | + action.pop(0) |
| 95 | + elif action [0][0] == "saved_video_path": |
| 96 | + vm.saved_video_path = action[0][1] |
| 97 | + action.pop(0) |
| 98 | + |
| 99 | + |
| 100 | + |
| 101 | + elif action [0][0] == "vid_qual": |
| 102 | + vm.vid_qual = int(action[0][1]) |
| 103 | + action.pop(0) |
| 104 | + |
| 105 | + elif action [0][0] == "parameters": |
| 106 | + if action[0][1]["GFPGANState"]: |
| 107 | + if not vm.GFPGAN_model: |
| 108 | + gui.set_status("loading GFPGAN...") |
| 109 | + vm.GFPGAN_model = load_GFPGAN_model() |
| 110 | + gui.set_status("GFPGAN loaded!") |
| 111 | + if action[0][1]["CLIPState"]: |
| 112 | + if not vm.clip_session: |
| 113 | + gui.set_status("loading CLIP..") |
| 114 | + vm.clip_session, vm.cuda_device = load_clip_model() |
| 115 | + gui.set_status("CLIP loaded!") |
| 116 | + if action[0][1]["OccluderState"]: |
| 117 | + if not vm.occluder_model: |
| 118 | + gui.set_status("loading Occluder.") |
| 119 | + vm.occluder_model, vm.occluder_tensor = load_occluder_model() |
| 120 | + gui.set_status("Occluder loaded!") |
| 121 | + if action[0][1]["FaceParserState"]: |
| 122 | + if not vm.face_parsing_model: |
| 123 | + gui.set_status("loading FaceParser") |
| 124 | + vm.face_parsing_model, vm.face_parsing_tensor = load_face_parser_model() |
| 125 | + gui.set_status("FaceParser loaded!") |
| 126 | + |
| 127 | + |
| 128 | + vm.parameters = action[0][1] |
| 129 | + action.pop(0) |
| 130 | + |
| 131 | + elif action [0][0] == "load_models": |
| 132 | + gui.set_status("loading Faceapp...") |
| 133 | + faceapp = load_faceapp_model() |
| 134 | + gui.set_faceapp_model(faceapp) |
| 135 | + vm.set_faceapp_model(faceapp) |
| 136 | + gui.set_status("loading Target Videos...") |
| 137 | + gui.populate_target_videos() |
| 138 | + gui.set_status("loading Source Faces...") |
| 139 | + gui.load_source_faces() |
| 140 | + gui.set_status("Done...") |
| 141 | + action.pop(0) |
| 142 | + |
| 143 | + |
| 144 | + # From VM |
| 145 | + elif action[0][0] == "stop_play": |
| 146 | + gui.toggle_play_video() |
| 147 | + action.pop(0) |
| 148 | + |
| 149 | + elif action[0][0] == "set_slider_length": |
| 150 | + gui.set_video_slider_length(action[0][1]) |
| 151 | + action.pop(0) |
| 152 | + |
| 153 | + elif action[0][0] == "send_msg": |
| 154 | + gui.set_status(action[0][1]) |
| 155 | + action.pop(0) |
| 156 | + |
| 157 | + else: |
| 158 | + print("Action not found: "+action[0][0]+" "+str(action[0][1])) |
| 159 | + action.pop(0) |
| 160 | + |
| 161 | + # start = time.time() |
| 162 | + |
| 163 | + |
| 164 | + gui.check_for_video_resize() |
| 165 | + vm.process() |
| 166 | + gui.after(1, coordinator) |
| 167 | + # print(time.time() - start) |
| 168 | + |
| 169 | +def load_faceapp_model(): |
| 170 | + app = FaceAnalysis(name='buffalo_l') |
| 171 | + app.prepare(ctx_id=0, det_size=(640, 640)) |
| 172 | + return app |
| 173 | + |
| 174 | +def load_swapper_model(): |
| 175 | + # Load Swapper model and get graph param |
| 176 | + model = onnx.load("./models/inswapper_128.fp16.onnx") |
| 177 | + graph = model.graph |
| 178 | + |
| 179 | + emap = onnx.numpy_helper.to_array(graph.initializer[-1]) |
| 180 | + |
| 181 | + # Create Swapper model session |
| 182 | + opts = onnxruntime.SessionOptions() |
| 183 | + # opts.enable_profiling = True |
| 184 | + opts.enable_cpu_mem_arena = False |
| 185 | + return onnxruntime.InferenceSession( "./models/inswapper_128.fp16.onnx", opts, providers=["CUDAExecutionProvider"]), emap |
| 186 | + |
| 187 | +def load_clip_model(): |
| 188 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 189 | + print(f"Using device: {device}") |
| 190 | + clip_session = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, complex_trans_conv=True) |
| 191 | + clip_session.eval(); |
| 192 | + clip_session.load_state_dict(torch.load('./models/rd64-uni-refined.pth', map_location=torch.device('cuda')), strict=False) |
| 193 | + clip_session.to(device) |
| 194 | + return clip_session, device |
| 195 | + |
| 196 | +def load_GFPGAN_model(): |
| 197 | + |
| 198 | + opts = onnxruntime.SessionOptions() |
| 199 | + # opts.enable_profiling = True |
| 200 | + opts.enable_cpu_mem_arena = False |
| 201 | + GFPGAN_session = onnxruntime.InferenceSession( "./models/GFPGANv1.4.onnx", providers=["CUDAExecutionProvider"]) |
| 202 | + return GFPGAN_session |
| 203 | + |
| 204 | +def load_occluder_model(): |
| 205 | + to_tensor = transforms.ToTensor() |
| 206 | + model = smp.Unet(encoder_name='resnet18', encoder_weights='imagenet', classes=1, activation=None) |
| 207 | + |
| 208 | + weights = torch.load('./models/occluder.ckpt') |
| 209 | + new_weights = OrderedDict() |
| 210 | + for key in weights.keys(): |
| 211 | + new_key = '.'.join(key.split('.')[1:]) |
| 212 | + new_weights[new_key] = weights[key] |
| 213 | + |
| 214 | + model.load_state_dict(new_weights) |
| 215 | + model.to('cuda') |
| 216 | + model.eval() |
| 217 | + return model, to_tensor |
| 218 | + |
| 219 | +def load_face_parser_model(): |
| 220 | + n_classes = 19 |
| 221 | + model = BiSeNet(n_classes=n_classes) |
| 222 | + model.cuda() |
| 223 | + model.load_state_dict(torch.load("./models/79999_iter.pth")) |
| 224 | + model.eval() |
| 225 | + |
| 226 | + to_tensor = transforms.Compose([ |
| 227 | + transforms.ToTensor(), |
| 228 | + transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), |
| 229 | + ]) |
| 230 | + |
| 231 | + return model, to_tensor |
| 232 | + |
| 233 | +def run(): |
| 234 | + global gui, vm, action, frame, r_frame |
| 235 | + gui = GUI.GUI() |
| 236 | + vm = VM.VideoManager() |
| 237 | + |
| 238 | + action = [] |
| 239 | + frame = [] |
| 240 | + r_frame = [] |
| 241 | + |
| 242 | + |
| 243 | + gui.initialize_gui() |
| 244 | + coordinator() |
| 245 | + |
| 246 | + gui.mainloop() |
| 247 | + |
| 248 | + |
0 commit comments