diff --git a/tests/models/test_StandardScaler.py b/tests/models/test_StandardScaler.py index ea371d6..9999f42 100644 --- a/tests/models/test_StandardScaler.py +++ b/tests/models/test_StandardScaler.py @@ -4,7 +4,7 @@ import sklearn.preprocessing as sk_pp from diffprivlib.models.standard_scaler import StandardScaler -from diffprivlib.utils import PrivacyLeakWarning, DiffprivlibCompatibilityWarning, BudgetError +from diffprivlib.utils import PrivacyLeakWarning, DiffprivlibCompatibilityWarning, BudgetError, check_random_state class TestStandardScaler(TestCase): @@ -65,12 +65,13 @@ def test_inf_epsilon(self): self.assertTrue(np.all(dp_ss.n_samples_seen_ == sk_ss.n_samples_seen_)) def test_different_results(self): - X = np.random.rand(10, 5) + rng = check_random_state(1) + X = rng.random((10, 5)) - ss1 = StandardScaler(bounds=(0, 1)) + ss1 = StandardScaler(bounds=(0, 1), random_state=rng) ss1.fit(X) - ss2 = StandardScaler(bounds=(0, 1)) + ss2 = StandardScaler(bounds=(0, 1), random_state=rng) ss2.fit(X) self.assertFalse(np.allclose(ss1.mean_, ss2.mean_), "Arrays %s and %s should be different" % @@ -88,8 +89,8 @@ def test_functionality(self): self.assertIsNotNone(ss.fit_transform(X)) def test_similar_results(self): - rng = np.random.RandomState(0) - X = rng.rand(100000, 5) + rng = check_random_state(0) + X = rng.random((100000, 5)) dp_ss = StandardScaler(bounds=(0, 1), epsilon=float("inf"), random_state=rng) dp_ss.fit(X) @@ -104,8 +105,8 @@ def test_similar_results(self): self.assertTrue(np.all(dp_ss.n_samples_seen_ == sk_ss.n_samples_seen_)) def test_random_state(self): - rng = np.random.RandomState(0) - X = rng.rand(100000, 5) + rng = check_random_state(0) + X = rng.random((100000, 5)) ss0 = StandardScaler(bounds=(0, 1), epsilon=1, random_state=0) ss1 = StandardScaler(bounds=(0, 1), epsilon=1, random_state=1)