-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbest_model.py
225 lines (179 loc) · 6.99 KB
/
best_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""
Authors:
Jason Youn -jyoun@ucdavis.edu
Description:
Main python file to run.
To-do:
"""
# standard imports
import argparse
import logging as log
# third party imports
import matplotlib.pyplot as plt
import numpy as np
# local imports
from managers.model_manager import ModelManager
from utils.config_parser import ConfigParser
from utils.set_logging import set_logging
from utils.visualization import plot_pr, save_figure
from sklearn.metrics import precision_score, recall_score, accuracy_score
from sklearn.metrics import confusion_matrix, f1_score
# global variables
DEFAULT_CONFIG_FILE = './config/best_model.ini'
def parse_argument():
"""
Parse input arguments.
Returns:
- parsed arguments
"""
parser = argparse.ArgumentParser(description='Description goes here.')
parser.add_argument(
'--config_file',
default=DEFAULT_CONFIG_FILE,
help='Path to the .ini configuration file.')
return parser.parse_args()
def plot_pr_print_cm(baseline_classifier, best_classifier, main_config, model_manager):
classifiers_ys = {}
for classifier in [baseline_classifier, best_classifier]:
log.info('Running model for classifier \'%s\'', classifier)
# load config parsers
preprocess_config = ConfigParser(main_config.get_str('preprocess_config'))
classifier_config = ConfigParser(main_config.get_str('classifier_config'))
# perform preprocessing
X, y = model_manager.preprocess(preprocess_config, section=classifier)
# select subset of features if requested
selected_features = main_config.get_str_list('selected_features')
if selected_features:
log.info('Selecting subset of features: %s', selected_features)
X = X[selected_features]
# run classification model
classifier_config.overwrite('classifier', classifier)
score_avg, score_std, ys = model_manager.run_model_cv(
X, y, 'f1', classifier_config)
classifiers_ys[classifier] = ys
# confusion matrix
(y_trues, y_preds, y_probs) = classifiers_ys[best_classifier]
tn = []
fp = []
fn = []
tp = []
pred_pos = []
pred_neg = []
known_pos = []
known_neg = []
f1 = []
precision = []
recall = []
specificity = []
npv = []
fdr = []
accuracy = []
for fold in range(len(y_trues)):
cm_result = confusion_matrix(y_trues[fold], y_preds[fold]).ravel()
tn.append(cm_result[0])
fp.append(cm_result[1])
fn.append(cm_result[2])
tp.append(cm_result[3])
pred_pos.append(cm_result[3] + cm_result[1])
pred_neg.append(cm_result[2] + cm_result[0])
known_pos.append(cm_result[3] + cm_result[2])
known_neg.append(cm_result[1] + cm_result[0])
f1.append(f1_score(y_trues[fold], y_preds[fold]))
precision.append(precision_score(y_trues[fold], y_preds[fold], average='binary'))
recall.append(recall_score(y_trues[fold], y_preds[fold], average='binary'))
specificity.append(cm_result[0] / (cm_result[0] + cm_result[1]))
npv.append(cm_result[0] / (cm_result[0] + cm_result[2]))
fdr.append(cm_result[1] / (cm_result[1] + cm_result[3]))
accuracy.append(accuracy_score(y_trues[fold], y_preds[fold]))
tn_mean = np.mean(tn)
fp_mean = np.mean(fp)
fn_mean = np.mean(fn)
tp_mean = np.mean(tp)
pred_pos_mean = np.mean(pred_pos)
pred_neg_mean = np.mean(pred_neg)
known_pos_mean = np.mean(known_pos)
known_neg_mean = np.mean(known_neg)
f1_mean = np.mean(f1)
precision_mean = np.mean(precision)
recall_mean = np.mean(recall)
specificity_mean = np.mean(specificity)
npv_mean = np.mean(npv)
fdr_mean = np.mean(fdr)
accuracy_mean = np.mean(accuracy)
tn_std = np.std(tn)
fp_std = np.std(fp)
fn_std = np.std(fn)
tp_std = np.std(tp)
pred_pos_std = np.std(pred_pos)
pred_neg_std = np.std(pred_neg)
known_pos_std = np.std(known_pos)
known_neg_std = np.std(known_neg)
f1_std = np.std(f1)
precision_std = np.std(precision)
recall_std = np.std(recall)
specificity_std = np.std(specificity)
npv_std = np.std(npv)
fdr_std = np.std(fdr)
accuracy_std = np.std(accuracy)
log.info('Confusion matrix (tp, fp, fn, tn): (%.2f±%.2f, %.2f±%.2f, %.2f±%.2f, %.2f±%.2f)',
tp_mean, tp_std, fp_mean, fp_std, fn_mean, fn_std, tn_mean, tn_std)
log.info('pred pos: %.2f±%.2f', pred_pos_mean, pred_pos_std)
log.info('pred neg: %.2f±%.2f', pred_neg_mean, pred_neg_std)
log.info('known pos: %.2f±%.2f', known_pos_mean, known_pos_std)
log.info('known neg: %.2f±%.2f', known_neg_mean, known_neg_std)
log.info('F1: %.2f±%.2f', f1_mean, f1_std)
log.info('Precision: %.2f±%.2f', precision_mean, precision_std)
log.info('Recall: %.2f±%.2f', recall_mean, recall_std)
log.info('Specificity: %.2f±%.2f', specificity_mean, specificity_std)
log.info('Npv: %.2f±%.2f', npv_mean, npv_std)
log.info('Fdr: %.2f±%.2f', fdr_mean, fdr_std)
log.info('Accuracy: %.2f±%.2f', accuracy_mean, accuracy_std)
# plot PR curve
fig = plt.figure()
lines = []
labels = []
for classifier, ys in classifiers_ys.items():
y_trues, y_preds, y_probs = ys
if classifier == best_classifier:
num_folds = len(y_trues)
precision = 0
recall = 0
for fold in range(num_folds):
precision += precision_score(y_trues[fold], y_preds[fold], average='binary')
recall += recall_score(y_trues[fold], y_preds[fold], average='binary')
precision /= num_folds
recall /= num_folds
arrowprops = {'arrowstyle': '->'}
plt.scatter(recall, precision, s=30, marker='x', c='k', zorder=3)
plt.annotate(
'Operational point',
(recall, precision),
(recall-0.05, precision+0.05),
arrowprops=arrowprops)
y_probs_1 = tuple(y_prob[1].to_numpy() for y_prob in y_probs)
line, label = plot_pr(y_trues, y_probs_1, classifier)
lines.append(line)
labels.append(label)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Best model ({}) PR curve'.format(best_classifier))
plt.legend(lines, labels, loc='upper right', prop={'size': 10})
save_figure(fig, main_config.get_str('pr_curve'))
def main():
"""
Main function.
"""
# parse args
args = parse_argument()
# load main config file and set logging
main_config = ConfigParser(args.config_file)
set_logging(log_file=main_config.get_str('log_file'))
# initialize model manager object
model_manager = ModelManager()
# baseline / best classifiers
baseline_classifier = main_config.get_str('baseline')
best_classifier = main_config.get_str('classifier')
# plot PR curve and print confusion matrix
plot_pr_print_cm(baseline_classifier, best_classifier, main_config, model_manager)
if __name__ == '__main__':
main()