forked from gorodnichy/LA-R-KerasNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRStudio-tf-01-Board.R
206 lines (169 loc) · 6.64 KB
/
RStudio-tf-01-Board.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Sources : ----
# https://tensorflow.rstudio.com/tensorflow/articles/howto_summaries_and_tensorboard.html
# https://tensorflow.rstudio.com/tensorflow/articles/howto_graph_viz.html
# .1 The code below is an excerpt from mnist/mnist_with_summaries.R ----
# https://github.com/rstudio/tensorflow/blob/master/inst/examples/mnist/mnist_with_summaries.R ---
#
# (https://www.tensorflow.org/api_docs/python/train.html#summary-operations).
# (https://www.tensorflow.org/api_docs/python/summary/).
#
# Attach a lot of summaries to a Tensor
variable_summaries <- function(var, name) {
with(tf$name_scope("summaries"), {
mean <- tf$reduce_mean(var)
tf$summary$scalar(paste0("mean/", name), mean)
with(tf$name_scope("stddev"), {
stddev <- tf$sqrt(tf$reduce_mean(tf$square(var - mean)))
})
tf$summary$scalar(paste0("stddev/", name), stddev)
tf$summary$scalar(paste0("max/", name), tf$reduce_max(var))
tf$summary$scalar(paste0("min/", name), tf$reduce_min(var))
tf$summary$histogram(name, var)
})
}
# Reusable code for making a simple neural net layer.
#
# It does a matrix multiply, bias add, and then uses relu to nonlinearize.
# It also sets up name scoping so that the resultant graph is easy to read,
# and adds a number of summary ops.
#
nn_layer <- function(input_tensor, input_dim, output_dim,
layer_name, act=tf$nn$relu) {
with(tf$name_scope(layer_name), {
# This Variable will hold the state of the weights for the layer
with(tf$name_scope("weights"), {
weights <- weight_variable(shape(input_dim, output_dim))
variable_summaries(weights, paste0(layer_name, "/weights"))
})
with(tf$name_scope("biases"), {
biases <- bias_variable(shape(output_dim))
variable_summaries(biases, paste0(layer_name, "/biases"))
})
with (tf$name_scope("Wx_plus_b"), {
preactivate <- tf$matmul(input_tensor, weights) + biases
tf$summary$histogram(paste0(layer_name, "/pre_activations"), preactivate)
})
activations <- act(preactivate, name = "activation")
tf$summary$histogram(paste0(layer_name, "/activations"), activations)
})
activations
}
hidden1 <- nn_layer(x, 784L, 500L, "layer1")
with(tf$name_scope("dropout"), {
keep_prob <- tf$placeholder(tf$float32)
tf$summary$scalar("dropout_keep_probability", keep_prob)
dropped <- tf$nn$dropout(hidden1, keep_prob)
})
y <- nn_layer(dropped, 500L, 10L, "layer2", act = tf$nn$softmax)
with(tf$name_scope("cross_entropy"), {
diff <- y_ * tf$log(y)
with(tf$name_scope("total"), {
cross_entropy <- -tf$reduce_mean(diff)
})
tf$summary$scalar("cross entropy", cross_entropy)
})
with(tf$name_scope("train"), {
optimizer <- tf$train$AdamOptimizer(FLAGS$learning_rate)
train_step <- optimizer$minimize(cross_entropy)
})
with(tf$name_scope("accuracy"), {
with(tf$name_scope("correct_prediction"), {
correct_prediction <- tf$equal(tf$arg_max(y, 1L), tf$arg_max(y_, 1L))
})
with(tf$name_scope("accuracy"), {
accuracy <- tf$reduce_mean(tf$cast(correct_prediction, tf$float32))
})
tf$summary$scalar("accuracy", accuracy)
})
# Merge all the summaries and write them out to /tmp/mnist_logs (by default)
merged <- tf$summary$merge_all()
train_writer <- tf$summary$FileWriter(file.path(FLAGS$summaries_dir, "train"),
sess$graph)
test_writer <- tf$summary$FileWriter(file.path(FLAGS$summaries_dir, "test"))
sess$run(tf$global_variables_initializer())
# . 1b add summaries to the FileWriters as we train and test the model. ----
# Train the model, and also write summaries.
# Every 10th step, measure test-set accuracy, and write test summaries
# All other steps, run train_step on training data, & add training summaries
# Make a TensorFlow feed_dict: maps data onto Tensor placeholders.
feed_dict <- function(train) {
if (train || FLAGS$fake_data) {
batch <- mnist$train$next_batch(100L, fake_data = FLAGS$fake_data)
xs <- batch[[1]]
ys <- batch[[2]]
k <- FLAGS$dropout
} else {
xs <- mnist$test$images
ys <- mnist$test$labels
k <- 1.0
}
dict(x = xs,
y_ = ys,
keep_prob = k)
}
for (i in 1:FLAGS$max_steps) {
if (i %% 10 == 0) { # Record summaries and test-set accuracy
result <- sess$run(list(merged, accuracy), feed_dict = feed_dict(FALSE))
summary <- result[[1]]
acc <- result[[2]]
cat(sprintf("Accuracy at step %s: %s", i, acc))
test_writer$add_summary(summary, i)
} else { # Record train set summaries, and train
result <- sess$run(list(merged, train_step), feed_dict = feed_dict(TRUE))
summary <- result[[1]]
train_writer$add_summary(summary, i)
}
}
# . 1c Launching TensorBoard ----
tensorboard(log_dir = "path/to/log-directory")
# .2 https://tensorflow.rstudio.com/tensorflow/articles/howto_graph_viz.html -----
with(tf$name_scope("hidden") %as% scope, {
a <- tf$constant(5L, name="alpha")
W <- tf$Variable(tf$random_uniform(shape(1L, 2L), -1.0, 1.0), name="weights")
b <- tf$Variable(tf$zeros(shape(1L), name="biases"))
})
# 2.b Runtime statistics -----
# Train the model, and also write summaries.
# Every 10th step, measure test-set accuracy, and write test summaries
# All other steps, run train_step on training data, & add training summaries
# Make a TensorFlow feed_dict: maps data onto Tensor placeholders.
feed_dict <- function(train) {
if (train || FLAGS$fake_data) {
batch <- mnist$train$next_batch(100L, fake_data = FLAGS$fake_data)
xs <- batch[[1]]
ys <- batch[[2]]
k <- FLAGS$dropout
} else {
xs <- mnist$test$images
ys <- mnist$test$labels
k <- 1.0
}
dict(x = xs,
y_ = ys,
keep_prob = k)
}
for (i in 1:FLAGS$max_steps) {
if (i %% 10 == 0) { # Record summaries and test-set accuracy
result <- sess$run(list(merged, accuracy), feed_dict = feed_dict(FALSE))
summary <- result[[1]]
acc <- result[[2]]
test_writer$add_summary(summary, i)
} else { # Record train set summaries, and train
if (i %% 100 == 99) { # Record execution stats
run_options <- tf$RunOptions(trace_level = tf$RunOptions()$FULL_TRACE)
run_metadata <- tf$RunMetadata()
result <- sess$run(list(merged, train_step),
feed_dict = feed_dict(TRUE),
options = run_options,
run_metadata = run_metadata)
summary <- result[[1]]
train_writer$add_run_metadata(run_metadata, sprintf("step%03d", i))
train_writer$add_summary(summary, i)
cat("Adding run metadata for ", i, "\n")
} else { # Record a summary
result <- sess$run(list(merged, train_step), feed_dict = feed_dict(TRUE))
summary <- result[[1]]
train_writer$add_summary(summary, i)
}
}
}