-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpredAdjMatSbtm.m
90 lines (75 loc) · 3.25 KB
/
predAdjMatSbtm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
function predMat = predAdjMatSbtm(adj,probNewMat,probExistMat,probInit, ...
class,Opt)
%predAdjMatSbtm Forecast adjacency matrix at next time step using SBTM
% predMat = predAdjMatSbtm(adj,probNewMat,probExistMat,probInit, ...
% class,Opt)
%
% Inputs:
% adj - 3-D array of graph adjacency matrices, where each slice along the
% third dimension denotes the adjacency matrix at time t. Each
% adjacency matrix is binary with no self-edges and can be directed,
% i.e. w(i,j,t) = 1 denotes an edge from i to j at time t, and
% w(i,j,t) = 0 denotes the absence of an edge from i to j at time t.
% probNewMat - 3-D array where entry (a,b,t) denotes the probability that
% a non-edge in block (a,b) at time t-1 becomes an edge at
% time t
% probExistMat - 3-D array where entry (a,b,t) denotes the probability
% that an edge in block (a,b) at time t-1 re-occurs at
% time t
% probInitMat - Matrix of class connection probabilities between classes
% at initial time step
% class - Matrix of class membership vectors, where each column denotes
% the class membership at time t. Set elements to 0 to indicate
% that a node is inactive during a time step.
%
% Optional inputs (specified as fields of Opt [default in brackets]):
% 'directed' - Whether the graph is directed (set to true or false)
% [ false ]
%
% Outputs:
% predMat - 3-D array of edge probabilities, where entry (i,j,t) denotes
% the probability of forming an edge from node i to j at time t
% Author: Kevin S. Xu
% Set defaults for optional parameters if necessary
defaultFields = {'directed'};
defaultValues = {false};
Opt = setDefaultParam(Opt,defaultFields,defaultValues);
directed = Opt.directed;
[n,~,tMax] = size(adj);
k = size(probNewMat,1);
predMat = zeros(n,n,tMax);
% t = 2 case: generate prediction using HM-SBM
predMat(:,:,[1 2]) = predAdjMatDsbm(adj(:,:,[1 2]),cat(3,probInit, ...
zeros(k,k)),class(:,[1 2]));
% t = 3 and higher: generate prediction using SBTM
for t = 3:tMax
predMatCurr = zeros(n,n);
% Binary masks denoting edges and non-edges at previous time
zeroMask = (adj(:,:,t-1)==0);
oneMask = ~zeroMask;
% Remove diagonal from set of non-edges since we are not allowing
% self-edges
zeroMask(diag(true(n,1))) = false;
for a = 1:k
if directed == true
bStart = 1;
else
bStart = a;
end
for b = bStart:k
blockMask = false(n,n);
blockMask(class(:,t-1)==a,class(:,t-1)==b) = true;
if directed == false
blockMask(class(:,t-1)==b,class(:,t-1)==a) = true;
end
zeroBlock = zeroMask & blockMask;
oneBlock = oneMask & blockMask;
% Predicted probability of an edge is either probability of new
% edge forming or existing edge re-occurring
predMatCurr(zeroBlock) = probNewMat(a,b,t-1);
predMatCurr(oneBlock) = probExistMat(a,b,t-1);
end
end
predMat(:,:,t) = predMatCurr;
end
end