-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_test.py
47 lines (34 loc) · 1.79 KB
/
main_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from pybliometrics.scopus import ScopusSearch,AbstractRetrieval,AuthorRetrieval
import pandas as pd
import numpy as np
import source_code
from source_code import functions,classes
from source_code.classes import research_topic
#--------------------------------------------------------------------------
# Case study
#--------------------------------------------------------------------------
#--------------------------------- Input data --------------------------------
# Define th name of research topic
name='self_consumption' # also used for naming the xlsx and npy files
# Define the eid of one reference paper
reference_paper_eid="2-s2.0-85123755228"
# Define the keywords as a criterion
keywords=['collective self-consumption'
]
# Note: In this particular example, we intentionally used a long keyword to
# reduce the number of corresponding papers and therefore get the results faster
# Find keyword variations
keywords=functions.generate_variations(keywords)
#------------------------------ Doing the analysis --------------------------------
# Create an object of research topic
self_consumption=research_topic(name,reference_paper_eid,keywords)
# Analyze the object "self_consumption"
results=self_consumption.analyze()
# Plot the interactive graph
results.plot_network_graph()
# -------------------------------- Output data ---------------------------------
# see the outputs xlsx - the main file with relevant publications
# Additional files as publciations outside of scopus and with errors
np.save(results.name+'_'+'publications_outside_scopus.npy',results.publications_outside_scopus)
np.save(results.name+'_'+'publications_with_errors.npy',results.publications_with_errors)
np.save(results.name+'_'+'paper_population.npy',results.paper_population)