-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpickerBackEnd.py
102 lines (83 loc) · 4.2 KB
/
pickerBackEnd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from pandas_datareader import data as pdr
from yahoo_fin import stock_info as si
from pandas import ExcelWriter
import pandas as pd
import yfinance as yf
import pandas as pd
import datetime
import time
yf.pdr_override()
# Variables
tickers = si.tickers_sp500()
tickers = [item.replace(".", "-") for item in tickers] # Yahoo Finance uses dashes instead of dots
index_name = '^GSPC'
start_date = datetime.datetime.now() - datetime.timedelta(days=365)
end_date = datetime.date.today()
exportList = pd.DataFrame(columns=['Stock', "RS_Rating", "50 Day MA", "150 Day Ma", "200 Day MA", "52 Week Low", "52 week High"])
returns_multiples = []
# Index Returns
index_df = pdr.get_data_yahoo(index_name, start_date, end_date)
index_df['Percent Change'] = index_df['Adj Close'].pct_change()
index_return = (index_df['Percent Change'] + 1).cumprod()[-1]
# Find top 30% performing stocks (relative to the S&P 500)
for ticker in tickers:
# Download historical data as CSV for each stock (makes the process faster)
df = pdr.get_data_yahoo(ticker, start_date, end_date)
df.to_csv(f'{ticker}.csv')
# Calculating returns relative to the market (returns multiple)
df['Percent Change'] = df['Adj Close'].pct_change()
stock_return = (df['Percent Change'] + 1).cumprod()[-1]
returns_multiple = round((stock_return / index_return), 2)
returns_multiples.extend([returns_multiple])
print (f'Ticker: {ticker}; Returns Multiple against S&P 500: {returns_multiple}\n')
time.sleep(1)
# Creating dataframe of only top 30%
rs_df = pd.DataFrame(list(zip(tickers, returns_multiples)), columns=['Ticker', 'Returns_multiple'])
rs_df['RS_Rating'] = rs_df.Returns_multiple.rank(pct=True) * 100
rs_df = rs_df[rs_df.RS_Rating >= rs_df.RS_Rating.quantile(.70)]
# Checking Minervini conditions of top 30% of stocks in given list
rs_stocks = rs_df['Ticker']
for stock in rs_stocks:
try:
df = pd.read_csv(f'{stock}.csv', index_col=0)
sma = [50, 150, 200]
for x in sma:
df["SMA_"+str(x)] = round(df['Adj Close'].rolling(window=x).mean(), 2)
# Storing required values
currentClose = df["Adj Close"][-1]
moving_average_50 = df["SMA_50"][-1]
moving_average_150 = df["SMA_150"][-1]
moving_average_200 = df["SMA_200"][-1]
low_of_52week = round(min(df["Low"][-260:]), 2)
high_of_52week = round(max(df["High"][-260:]), 2)
RS_Rating = round(rs_df[rs_df['Ticker']==stock].RS_Rating.tolist()[0])
try:
moving_average_200_20 = df["SMA_200"][-20]
except Exception:
moving_average_200_20 = 0
# Condition 1: Current Price > 150 SMA and > 200 SMA
condition_1 = currentClose > moving_average_150 > moving_average_200
# Condition 2: 150 SMA and > 200 SMA
condition_2 = moving_average_150 > moving_average_200
# Condition 3: 200 SMA trending up for at least 1 month
condition_3 = moving_average_200 > moving_average_200_20
# Condition 4: 50 SMA> 150 SMA and 50 SMA> 200 SMA
condition_4 = moving_average_50 > moving_average_150 > moving_average_200
# Condition 5: Current Price > 50 SMA
condition_5 = currentClose > moving_average_50
# Condition 6: Current Price is at least 30% above 52 week low
condition_6 = currentClose >= (1.3*low_of_52week)
# Condition 7: Current Price is within 25% of 52 week high
condition_7 = currentClose >= (.75*high_of_52week)
# If all conditions above are true, add stock to exportList
if(condition_1 and condition_2 and condition_3 and condition_4 and condition_5 and condition_6 and condition_7):
exportList = exportList.append({'Stock': stock, "RS_Rating": RS_Rating ,"50 Day MA": moving_average_50, "150 Day Ma": moving_average_150, "200 Day MA": moving_average_200, "52 Week Low": low_of_52week, "52 week High": high_of_52week}, ignore_index=True)
print (stock + " made the Minervini requirements")
except Exception as e:
print (e)
print(f"Could not gather data on {stock}")
exportList = exportList.sort_values(by='RS_Rating', ascending=False)
print('\n', exportList)
writer = ExcelWriter("ScreenOutput.xlsx")
exportList.to_excel(writer, "Sheet1")
writer.save()