-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfastapi_Recsys.py
405 lines (355 loc) · 16.3 KB
/
fastapi_Recsys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#####################################################
# Program : fastapi_Recsys.py
# Main function : Serving Rec-models result by fastapi
# Creator : Doohee Jung
# Created date : 2023.07.07
# Comment :
#####################################################
import uvicorn
from fastapi import FastAPI, Request
import pandas as pd
import pickle
import sys
import os
import time
import numpy as np
from tempfile import mkdtemp
import json
import yaml
import mmap
import heapq
import argparse
from AgensConnector import *
class SingletonMeta(type):
_instances = {}
def __call__(cls, *args, **kwargs):
if cls not in cls._instances:
cls._instances[cls] = super().__call__(*args, **kwargs)
return cls._instances[cls]
class RecFastapi(metaclass=SingletonMeta):
def __init__(self, host, port, topn_w, lgcn_w, it2v_w, connect_info, model_path):
self.app = FastAPI()
self.host = host
self.port = port
self.topn_w = int(topn_w)
self.lgcn_w = int(lgcn_w)
self.it2v_w = int(it2v_w)
self.connect_info = connect_info
self.model_path = model_path
self.norm = 1 / (self.topn_w + self.lgcn_w + self.it2v_w)
self.agconn = AgensConnector(**self.connect_info)
# Ensemble User & Item load
with open(self.model_path + "ensemble/tot_user_dict.pkl", "rb") as f:
self.total_user_dict = pickle.load(f)
with open(self.model_path + "ensemble/tot_item_dict.pkl", "rb") as f:
self.total_item_dict = pickle.load(f)
self.rev_total_item_dict = {v: k for k, v in self.total_item_dict.items()}
# Ensemble models memory mapping
self.lgcn_score = self.read_memmap(
self.model_path + "ensemble/lightgcn_aligned_score"
)
self.topn_score = self.read_memmap(
self.model_path + "ensemble/topn_aligned_score"
)
self.it2v_score = self.read_memmap(
self.model_path + "ensemble/item2vec_aligned_score"
)
# session_graph Pickle load
with open(self.model_path + "sessiongraph/session_result.pkl", "rb") as file:
mapped_file = mmap.mmap(file.fileno(), 0, access=mmap.ACCESS_READ)
self.session_result = pickle.loads(mapped_file)
# Itemknn Pickle load
self.itemknn_index = np.load(self.model_path + "itemknn/itemknn_index.npy")
with open(self.model_path + "itemknn/rev_itemknn_dict.pkl", "rb") as f:
self.rev_itemknn_dict = pickle.load(f)
self.itemknn_dict = {v: k for k, v in self.rev_itemknn_dict.items()}
def run_server(self):
# @app.get("/")
# def root():
# return {"message": "Hello, World!"}
# @app.get("/info")
# def get_info():
# return {"info": "This is an RecSys API server."}
uvicorn.run(self.app, host=self.host, port=self.port)
def read_memmap(self, mem_file_name):
"""디스크에 저장된 numpy.memmap객체를 읽는다"""
# r+ mode: Open existing file for reading and writing
with open(mem_file_name + ".conf", "r") as file:
memmap_configs = json.load(file)
return np.memmap(
mem_file_name,
mode="r+",
shape=tuple(memmap_configs["shape"]),
dtype=memmap_configs["dtype"],
)
def item_rec_view(self, itemid):
view_query = f"""
select T.* ,
tbl_item_img.item_img_path,
CASE
WHEN tbl_item_clothes_size.clothes_size_idx IS NOT NULL
THEN 'tbl_item_clothes_size.clothes_size_idx'
WHEN tbl_item_shoes_size.shoes_size_idx IS NOT NULL
THEN 'tbl_item_shoes_size.shoes_size_idx'
ELSE '00' END AS SIZE_FLAG,
CASE
WHEN tbl_item_clothes_size.clothes_size_idx IS NOT NULL
THEN tbl_item_clothes_size.clothes_size_idx
WHEN tbl_item_shoes_size.shoes_size_idx IS NOT NULL
THEN tbl_item_shoes_size.shoes_size_idx
ELSE '00' END AS SIZE_IDX
from tbl_streamlit_item_detail_view T
INNER JOIN tbl_item_img
ON 상품아이디 = tbl_item_img.item_idx
LEFT OUTER JOIN tbl_item_shoes_size
ON t.상품아이디 = tbl_item_shoes_size.item_idx
LEFT OUTER JOIN tbl_item_clothes_size
ON t.상품아이디 = tbl_item_clothes_size.item_idx
where 상품아이디 = {itemid}
"""
df_view = self.agconn.query_pandas(view_query)
# df_view['상품등록일시']= df_view['상품등록일시'].dt.strftime('%Y-%m-%d %H:%M:%S')
size_flag, size_idx = df_view.size_flag[0], df_view.size_idx[0]
df_view.drop(labels=["size_flag", "size_idx"], axis=1, inplace=True)
# if model == 'Item2Vec':
pred_idx = self.itemknn_dict[itemid]
pred_idx = self.itemknn_index[pred_idx][:100]
pred_idx = [self.rev_itemknn_dict[i] for i in pred_idx]
base_query = f"""
SELECT T.*,
tbl_item_img.item_img_path,
CASE
WHEN tbl_item_clothes_size IS NOT NULL
AND tbl_item_clothes_size.clothes_size_idx={size_idx}
THEN '01'
WHEN tbl_item_shoes_size IS NOT NULL
AND tbl_item_shoes_size.shoes_size_idx={size_idx}
THEN '01'
WHEN tbl_item_shoes_size.shoes_size_idx IS NULL
AND tbl_item_clothes_size.clothes_size_idx IS NULL
THEN '01'
ELSE '02'
END AS SIZE_FLAG
FROM tbl_streamlit_item_detail_view T
INNER JOIN tbl_item_img
ON 상품아이디 = tbl_item_img.item_idx
INNER JOIN (
SELECT unnest(
ARRAY {pred_idx}
) AS item_idx
) AS ids ON T.상품아이디 = ids.item_idx
LEFT OUTER JOIN tbl_item_shoes_size
ON 상품아이디 = tbl_item_shoes_size.item_idx
LEFT OUTER JOIN tbl_item_clothes_size
ON 상품아이디 = tbl_item_clothes_size.item_idx
ORDER BY CASE tbl_item_img.item_idx
"""
query = base_query
for i, k in enumerate(pred_idx):
query = query + f"""WHEN {k} THEN {i+1} """
item2vec_query = query + "ELSE 9999 END"
# elif model =='Session_graph':
df_item2vec = self.agconn.query_pandas(item2vec_query)
session_predict = self.session_result[itemid]
session_predict_100 = heapq.nlargest(
100, session_predict, key=session_predict.get
)
base_query = f"""
SELECT T.*,
tbl_item_img.item_img_path,
CASE
WHEN tbl_item_clothes_size IS NOT NULL
AND tbl_item_clothes_size.clothes_size_idx={size_idx}
THEN '01'
WHEN tbl_item_shoes_size IS NOT NULL
AND tbl_item_shoes_size.shoes_size_idx={size_idx}
THEN '01'
WHEN tbl_item_shoes_size.shoes_size_idx IS NULL
AND tbl_item_clothes_size.clothes_size_idx IS NULL
THEN '01'
ELSE '02'
END AS SIZE_FLAG
FROM tbl_streamlit_item_detail_view T
INNER JOIN tbl_item_img
ON 상품아이디 = tbl_item_img.item_idx
INNER JOIN (
SELECT unnest(
ARRAY {session_predict_100}
) AS item_idx
) AS ids
ON T.상품아이디 = ids.item_idx
LEFT OUTER JOIN tbl_item_shoes_size
ON 상품아이디 = tbl_item_shoes_size.item_idx
LEFT OUTER JOIN tbl_item_clothes_size
ON 상품아이디 = tbl_item_clothes_size.item_idx
ORDER BY CASE tbl_item_img.item_idx
"""
if len(session_predict_100) > 0:
query = base_query
for i, k in enumerate(session_predict_100):
query = query + f"""WHEN {k} THEN {i+1} """
sessiongraph_query = query + "ELSE 9999 END"
df_graph = self.agconn.query_pandas(sessiongraph_query)
else:
df_graph = df_item2vec.head(0)
if len(df_item2vec) != 0:
df_item2vec["상품등록일시"] = df_item2vec["상품등록일시"].dt.strftime(
"%Y-%m-%d %H:%M:%S"
)
if len(df_graph) != 0:
df_graph["상품등록일시"] = df_graph["상품등록일시"].dt.strftime("%Y-%m-%d %H:%M:%S")
if len(df_view) != 0:
df_view["상품등록일시"] = df_view["상품등록일시"].dt.strftime("%Y-%m-%d %H:%M:%S")
return df_item2vec.to_json(), df_graph.to_json(), df_view.to_json()
def item_views(self, itemid):
query = f"""
select T.* ,item_img.item_img_path
from tbl_streamlit_item_detail_view T
INNER JOIN tbl_item_img
ON 상품아이디 = tbl_item_img.item_idx
where 상품아이디 = {itemid}
"""
df_view = self.agconn.query_pandas(query)
df_view["상품등록일시"] = df_view["상품등록일시"].dt.strftime("%Y-%m-%d %H:%M:%S")
return df_view.to_json()
def user_view(self, user_id, start_date, end_date):
view_query = f"""
select T1.*, T2.ITEM_IMG_PATH
from tbl_streamlit_user_view T1
INNER join tbl_ITEM_IMG T2
on T2.ITEM_IDX = T1.상품아이디
AND 유저아이디 = {user_id}
and 조회일시 between '{start_date}'
and '{end_date}'
order by 조회일시 desc limit 50
"""
df_view = self.agconn.query_pandas(view_query)
if len(df_view) != 0:
df_view["상품등록일시"] = df_view["상품등록일시"].dt.strftime("%Y-%m-%d %H:%M:%S")
df_view["조회일시"] = df_view["조회일시"].dt.strftime("%Y-%m-%d %H:%M:%S")
return df_view.to_json()
def user_rec_view(self, user_id, model, topk):
global user_score
user_idx = self.total_user_dict[int(user_id)]
if model == "LightGCN":
user_score = self.lgcn_score[user_idx]
elif model == "TopN":
user_score = self.topn_score[user_idx]
elif model == "Item2Vec":
user_score = self.it2v_score[user_idx]
elif model == "Ensemble":
user_score = (
self.lgcn_score[user_idx]
+ self.topn_score[user_idx]
+ self.it2v_score[user_idx]
) * self.norm
# user_score[view_ids] = -np.inf
indices = user_score.argsort()[::-1][:topk]
pred_idx = [self.rev_total_item_dict[i] for i in indices]
query = ""
image_query = f"""
SELECT T.*,
tbl_item_img.item_img_path
FROM tbl_streamlit_item_view T
INNER JOIN tbl_item_img
ON 상품아이디 = tbl_item_img.item_idx
INNER JOIN (
SELECT unnest(
ARRAY {pred_idx}
) AS item_idx
) AS ids
ON tbl_item_img.item_idx = ids.item_idx
WHERE NOT EXISTS (
SELECT *
FROM tbl_streamlit_user_view
WHERE 유저아이디 = {user_id}
AND tbl_streamlit_user_view.상품아이디 = T.상품아이디
)
ORDER BY CASE tbl_item_img.item_idx
"""
for i, k in enumerate(pred_idx):
query = query + f"""WHEN {k} THEN {i+1} """
image_query = image_query + query + "ELSE 9999 END"
if sum(user_score) == 0:
image_query = image_query + " limit 0"
df_rec = self.agconn.query_pandas(image_query)
if len(df_rec) != 0:
df_rec["상품등록일시"] = df_rec["상품등록일시"].dt.strftime("%Y-%m-%d %H:%M:%S")
return df_rec.to_json()
def test_view(self, user_id, start_date, end_date):
query = f"""
select *
from tbl_streamlit_user_view
where 유저아이디 = {user_id}
and 조회일시 between '{start_date}'
and '{end_date}'
"""
df_test = self.agconn.query_pandas(query)
df_test["상품등록일시"] = df_test["상품등록일시"].dt.strftime("%Y-%m-%d %H:%M:%S")
df_test["조회일시"] = df_test["조회일시"].dt.strftime("%Y-%m-%d %H:%M:%S")
return df_test.to_json()
if __name__ == "__main__":
# YAML 파일 로드
with open("config.yml", "r") as file:
config = yaml.safe_load(file)
# 설정 가져오기
connect_info = config["connect_info"]
model_weights = config["model_weights"]
fastapi_info = config["fastapi_info"]
path_info = config["path_info"]
# 모델 가중치 설정 가져오기
topn_w = int(model_weights["topn"])
lgcn_w = int(model_weights["lgcn"])
it2v_w = int(model_weights["it2v"])
# FastAPI 정보 가져오기
host = fastapi_info["host"]
port = fastapi_info["port"]
# 모델 정보 가져오기
base_path = path_info["base_path"]
model_path = base_path + path_info["model_path"]
page_path = base_path + path_info["page_path"]
# RecFastapi 인스턴스 생성
rec_fastapi = RecFastapi(
host=host,
port=port,
topn_w=topn_w,
lgcn_w=lgcn_w,
it2v_w=it2v_w,
connect_info=connect_info,
model_path=model_path,
)
print(host,port,connect_info,model_path )
@rec_fastapi.app.post("/item_rec_view")
async def item_rec_view_api(request: Request):
data = await request.json()
itemid = data["itemid"]
# model = data['model']
result = rec_fastapi.item_rec_view(itemid)
return result
@rec_fastapi.app.post("/user_view")
async def user_view_api(request: Request):
data = await request.json()
user_id = data["user_id"]
start_date = data["start_date"]
end_date = data["end_date"]
result = rec_fastapi.user_view(user_id, start_date, end_date)
return result
@rec_fastapi.app.post("/user_rec_view")
async def user_rec_view_api(request: Request):
data = await request.json()
user_id = data["user_id"]
model = data["model"]
topk = data["topk"]
result = rec_fastapi.user_rec_view(user_id, model, topk)
return result
@rec_fastapi.app.post("/test_view")
async def test_view_api(request: Request):
data = await request.json()
user_id = data["user_id"]
start_date = data["start_date"]
end_date = data["end_date"]
result = rec_fastapi.test_view(user_id, start_date, end_date)
return result
rec_fastapi.run_server()