This repository has been archived by the owner on Oct 26, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathagents.py
156 lines (118 loc) · 4.89 KB
/
agents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import warnings
from rlagents.function_approximation import DefaultFA, FunctionApproximationBase
from rlagents.models import ModelBase, DefaultModel
from rlagents.memory import MemoryBase, ListMemory
from rlagents.optimisation import DefaultOptimiser, OptimiserBase
from rlagents.exploration import DefaultExploration, ExplorationBase
class Agent(object):
def __init__(self, action_space=None, observation_space=None, action_fa=None, observation_fa=None, model=None, exploration=None, memory=None, optimiser=None):
self.action_space = action_space
self.observation_space = observation_space
self.memory = memory
self.action_fa = action_fa
self.observation_fa = observation_fa
self.model = model
self.exploration = exploration
self.optimiser = optimiser
# Used by pool to understand what happened with an agent
self.episode_reward = 0
self.done = False
self.configured = False
if self.action_space is not None and self.observation_space is not None:
self.configure(self.action_space, self.observation_space)
def configure(self, action_space=None, observation_space=None, overwrite=False):
if self.configured and overwrite is False:
return
if action_space is None and observation_space is None:
return
if action_space is not None:
self.action_space = action_space
self.action_fa.configure(self.action_space)
if observation_space is not None:
self.observation_space = observation_space
self.observation_fa.configure(self.observation_space)
self.model.configure(self.action_fa, self.observation_fa)
self.exploration.configure(self.model)
self.optimiser.configure(self.model, self.memory)
self.configured = True
@property
def model(self):
return self._model
@model.setter
def model(self, m):
if not isinstance(m, ModelBase):
m = DefaultModel()
warnings.warn("Model type invalid, using defaults")
self._model = m
@property
def action_fa(self):
return self._action_fa
@action_fa.setter
def action_fa(self, afa):
if not isinstance(afa, FunctionApproximationBase):
afa = DefaultFA()
warnings.warn("action_fa must inherit from FunctionApproximationBase using defaults")
self._action_fa = afa
@property
def observation_fa(self):
return self._observation_fa
@observation_fa.setter
def observation_fa(self, ofa):
if not isinstance(ofa, FunctionApproximationBase):
ofa = DefaultFA()
warnings.warn("observation_fa must inherit from FunctionApproximationBase using defaults")
self._observation_fa = ofa
@property
def exploration(self):
return self._exploration
@exploration.setter
def exploration(self, ex):
if not isinstance(ex, ExplorationBase):
ex = DefaultExploration()
warnings.warn('Exploration type invalid, using default. ({0})'.format(ex))
self._exploration = ex
@property
def memory(self):
return self._memory
@memory.setter
def memory(self, m):
if not isinstance(m, MemoryBase):
m = ListMemory(size=2)
m.new(['observations',
'actions',
'done',
'rewards',
'new_obs'])
warnings.warn('Memory type invalid, using List. ({0})'.format(m))
self._memory = m
@property
def optimiser(self):
return self._optimiser
@optimiser.setter
def optimiser(self, o):
if not isinstance(o, OptimiserBase):
o = DefaultOptimiser()
warnings.warn("Optimiser is not a valid OptimiserBase")
self._optimiser = o
def export(self):
return {"Model": self.model.export(),
"Action FA": self.action_fa.export(),
"Observation FA": self.observation_fa.export(),
"Exploration": self.exploration.export(),
"Memory": self.memory.export(),
"Optimiser": self.optimiser.export()}
def act(self, observation, reward, done, initial_state=False):
if not self.configured:
raise AssertionError("Agent must have run .configure() before taking an action")
self.episode_reward += reward
self.done = done
if not initial_state:
self.memory.update({'new_obs': observation, 'done': done, 'rewards': reward})
self.optimiser.run()
action_values = self.exploration.bias_action_value(observation)
action = self.action_fa.convert(action_values)
if not done:
self.memory.store({'observations': observation, 'actions': action})
if done:
self.exploration.update()
return action