-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathanalyzer.py
218 lines (174 loc) · 7.79 KB
/
analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import nltk
import json
from nltk.corpus import stopwords, wordnet, movie_reviews
from nltk.stem import WordNetLemmatizer
# from glob import glob
# import os.path
# import pickle
import random
import numpy as np
import re
import collections
class Sentiment:
def __init__(self, pos=None, neg=None):
if not pos:
# self.__pos = [open(f).read() for f in glob('review_polarity/txt_sentoken/pos/*.txt')]
self.__pos = [movie_reviews.raw(file) for file in movie_reviews.fileids('pos')]
else:
self.__pos = pos
if not neg:
# self.__neg = [open(f).read() for f in glob('review_polarity/txt_sentoken/neg/*.txt')]
self.__neg = [movie_reviews.raw(file) for file in movie_reviews.fileids('neg')]
else:
self.__neg = neg
# if os.path.isfile('classifier.pickle'):
# # Load the features
# with open('classifier.pickle', 'rb') as f:
# self.__classifier = pickle.load(f)
# else:
# # Train a data set
# self.__classifier = nltk.NaiveBayesClassifier.train(self.__train_data())
# # Cache the features for faster predictions
# with open('classifier.pickle', 'wb') as f:
# pickle.dump(self.__classifier, f)
def __get_tag(self, tag):
if tag.startswith('R'):
return 'r'
elif tag.startswith('V'):
return 'v'
elif tag.startswith('J'):
return 'a'
return 'n'
def __process_chunk(self, chunk):
subtree = [(w[0], self.__get_tag(w[1])) for w in chunk]
# Convert to base words
lemmatizer = WordNetLemmatizer()
lemmas = [lemmatizer.lemmatize(*w) for w in subtree]
# Handle anomalies
words = [w.replace("n't", 'not').replace("'", '') for w in lemmas]
# Remove stop words
stop_words = stopwords.words("english")
tagged = nltk.pos_tag(stop_words)
stop_words = stop_words[:30] + [x[0] for x in tagged[30:130] if not re.match('[JIR]', x[1])] + stop_words[130:] + ['s']
result = [w for w in words if w not in stop_words]
return ' '.join(result)
def __preprocess(self, sentence):
# Tokenize into words
words = nltk.word_tokenize(sentence)
# Remove non-alphnumeric characters
words = [re.sub("^(?!')[\W_]+|(?!')[\W_]+$", '', i) for i in words]
words = list(filter(None, words))
# Empty sentence
if not words:
return []
# Parts of Speech tagging
tagged = nltk.pos_tag(words)
# Chunk required group of words
grammer = r'''Chunk: {<RB.?>+<VB.?>?(<DT>?<JJ.?>)+(<IN><PRP.?>?|<IN>?)(<DT>?<JJ.?>)*<NN.?>}
{<RB.?>+<VB.?>?(<DT>?<JJ.?>)*(<IN><PRP.?>?|<IN>?)(<DT>?<JJ.?>)+<NN.?>}
{<VB.?>?(<DT>?<JJ.?>)+(<IN><PRP.?>?|<IN>?)(<DT>?<JJ.?>)*<NN.?>}
{<VB.?>?(<DT>?<JJ.?>)*(<IN><PRP.?>?|<IN>?)(<DT>?<JJ.?>)+<NN.?>}
{<RB.?>+<VB.?>?(<DT>?<JJ.?>)*(<IN><PRP.?>?|<IN>?)(<DT>?<JJ.?>)+}
{<JJ.?>}'''
chunker = nltk.RegexpParser(grammer)
chunked = chunker.parse(tagged)
chunks = [np.array(subtree) for subtree in chunked.subtrees() if subtree.label() == 'Chunk']
return list(set(filter(None, [self.__process_chunk(chunk) for chunk in chunks])))
def bag_of_words(self, review):
# Tokenize into sentences
sentences = nltk.sent_tokenize(review)
return [x for sentence in sentences for x in self.__preprocess(sentence)]
def __make_feature(self, word_list):
return dict([(word, True) for word in word_list])
# def __train_data(self, pos=None, neg=None):
# if pos == None:
# p = self.__pos
# else:
# p = pos
# if neg == None:
# n = self.__neg
# else:
# n = neg
# return [(self.__make_feature(self.bag_of_words(review)), 'positive') for review in p] + [(self.__make_feature(self.bag_of_words(review)), 'negative') for review in n]
# def train(self, pos=None, neg=None, save=False):
# if pos == None and neg != None:
# raise Exception('pos is None and neg is not None')
# if pos != None and neg == None:
# raise Exception('pos is not None and neg is None')
# if pos != None and neg != None:
# if type(pos) != list and type(neg) != list:
# raise Exception('pos and neg aren\'t of type list')
# if len(pos) != len(neg):
# raise Exception('Unequal number of positive and negative reviews')
# # Train a data set
# self.__classifier = nltk.NaiveBayesClassifier.train(self.__train_data(pos, neg))
# if save:
# # Cache the features for faster predictions
# with open('classifier.pickle', 'wb') as f:
# pickle.dump(self.__classifier, f)
def get_positive_data(self):
return random.choice(self.__pos)
def get_negative_data(self):
return random.choice(self.__neg)
# def predict(self, sentences):
# if type(sentences) is str:
# return self.__classifier.classify(self.__make_feature(self.bag_of_words(sentences)))
# else:
# return [self.__classifier.classify(self.__make_feature(self.bag_of_words(sentence))) for sentence in sentences]
def main(self):
# Train data sets
# self.train(pos=self.__pos, neg=self.__neg, save=True)
# Test data sets
# print(self.predict(self.get_positive_data()))
# print(self.predict(self.get_negative_data()))
# print(self.predict(self.get_positive_data()))
# print(self.predict(self.get_negative_data()))
# print(self.predict(self.get_positive_data()))
# print(self.predict(self.get_negative_data()))
# print(self.predict(self.get_positive_data()))
# print(self.predict(self.get_negative_data()))
# pos = self.__pos[7]
# print('\nPositive Review:\n', pos)
# pos_words = self.bag_of_words(pos)
# print('Filtered Words:\n', pos_words)
# neg = self.__neg[39]
# print('\nNegative Review:\n', neg)
# print('Filtered Words:\n', self.bag_of_words(neg))
# print('\nPrediction: ', self.predict([pos, neg]))
with open('data.json') as data_file:
datas = json.load(data_file)
extracted_words = []
for data in datas:
dump = {
'URL': data['URL']
}
reviews = data['REVIEW'].split(' \n ')
dates = data['RDATE'].split(' \n ')
if (len(reviews) > len(dates)):
reviews = reviews[len(reviews)-len(dates):]
bags = collections.defaultdict(list)
for i, review in enumerate(reviews):
words = self.bag_of_words(review)
words = ', '.join(map(str, words))
# bags[i] = words
rev = {
'REVIEW': words,
'DATE': dates[i]
}
bags[i] = rev
dump['REVIEWS'] = bags
extracted_words.append(dump)
with open('bag_of_words.json', 'w') as f:
json.dump(extracted_words, f, indent=4)
# print(self.predict(self.__pos[:5] + self.__neg[:5]))
# for i in range(1):
# print(i, self.bag_of_words(self.__pos[i]))
# for i in range(10, 20):
# print(i, self.bag_of_words(self.__neg[i]))
# print(self.bag_of_words('not that bad'))
# print(self.bag_of_words('very bad'))
# print(self.bag_of_words('not very bad'))
# print(self.bag_of_words('boring'))
if __name__ == '__main__':
myObj = Sentiment()
myObj.main()