-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathextract_faces.py
53 lines (39 loc) · 1.39 KB
/
extract_faces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import cv2
import numpy as np
#Load HAAR face classifier
face_classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
#Load functions
def face_extractor(img):
#Function detects faces and returns the cropped face
#If no face detected, it returns the input image
faces = face_classifier.detectMultiScale(img, 1.3, 5)
if faces is ():
return None
#Crop all faces found
for (x,y,w,h) in faces:
x=x-10
y=y-10
cropped_face = img[y:y+h+50, x:x+w+50]
return cropped_face
#path of your video
cap = cv2.VideoCapture("#Your Video path")
count = 0
while True:
ret, frame = cap.read()
if face_extractor(frame) is not None:
count += 1
face = cv2.resize(face_extractor(frame), (400, 400))
#Save file in specified directory with unique name
#make sure you got directory called Images
file_name_path = './Images/' + str(count) + '.jpg'
cv2.imwrite(file_name_path, face)
cv2.putText(face, str(count), (50, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,0), 2)
cv2.imshow('Face Cropper', face)
else:
print("Face not found")
pass
if cv2.waitKey(1) == 13 or count == 1000: #13 is the Enter Key
break
cap.release()
cv2.destroyAllWindows()
print("Collecting Samples Complete")