-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sr.py
86 lines (66 loc) · 2.99 KB
/
train_sr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#================================ Imports
import os
from argparse import ArgumentParser
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import transforms
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger
from models import load_model
from models import SRLoggingCallback
from networks import load_sr_network
from srdata.dataloader import SRDataLoader
from utils.trainer_args import sr_Trainer_Default
def main(args):
# ================================ Initializing
# init network and model
net = SR_Nets.from_namespace(args)
model = SR_Model.from_namespace(args)
model.set_network(net)
# init dataloader
pl_srdata = SRDataLoader.from_namespace(args)
pl_srdata.setup()
train_dataloader = pl_srdata.train_dataloader()
test_dataloader = pl_srdata.test_dataloader()
# init logger
logger = TensorBoardLogger(os.path.join(args.logger_dir, args.exp_name), name=args.model_type)
# model saving
model_checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath=args.default_root_dir,
verbose=True,
save_last=True,
prefix=args.exp_name,
period=args.check_val_every_n_epoch, # this is to save model to `last`, in callback, we save model in separate files
filename='{epoch}-{step}',
)
# init trainer
trainer = pl.Trainer.from_argparse_args(args, gpus=args.gpu_useage, logger=logger, callbacks=[model_checkpoint_callback, SRLoggingCallback()])
# ================================ Train
trainer.fit(model, train_dataloader=train_dataloader, val_dataloaders=test_dataloader)
# ================================ Save Final Model
trainer.save_checkpoint(f'{args.default_root_dir}/{args.exp_name}-final.ckpt')
if __name__ == "__main__":
# fix the seed for reproducing
pl.seed_everything(1)
#================================ ArgParsing
# init Argment Parser
parser = ArgumentParser()
# add all the available trainer options to argparse, Check trainer's paras for help
parser = pl.Trainer.add_argparse_args(parser)
# figure out which model to use
parser.add_argument('--model_type', type=str, default='sr', help='Perceptual [percept] or PSNR [sr] oriented SR')
parser.add_argument('--network_name', type=str, default='FSRCNN', help='Name of your output')
parser.add_argument('--logger_dir', type=str, default='./EXPs/tb_logs', help='logging path')
parser.add_argument('--gpu_useage', type=int, default=1, help='Over write --gpus, it does not work now')
temp_args, _ = parser.parse_known_args()
# add model specific args
SR_Model = load_model(temp_args.model_type)
SR_Nets = load_sr_network(temp_args.network_name)
parser = SR_Model.add_model_specific_args(parser)
parser = SR_Nets.add_model_specific_args(parser)
# add training data specific args
parser = SRDataLoader.add_data_specific_args(parser)
args = parser.parse_args()
sr_Trainer_Default(args)
main(args)