-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain.py
224 lines (199 loc) · 5.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import os
import torch
import pytorch_lightning as ptl
from pytorch_lightning.loggers import TensorBoardLogger
from detector.data import FontDataModule
from detector.model import *
from utils import get_current_tag
parser = argparse.ArgumentParser()
parser.add_argument(
"-d",
"--devices",
nargs="*",
type=int,
default=[0],
help="GPU devices to use (default: [0])",
)
parser.add_argument(
"-b",
"--single-batch-size",
type=int,
default=64,
help="Batch size of single device (default: 64)",
)
parser.add_argument(
"-c",
"--checkpoint",
type=str,
default=None,
help="Trainer checkpoint path (default: None)",
)
parser.add_argument(
"-m",
"--model",
type=str,
default="resnet18",
choices=["resnet18", "resnet34", "resnet50", "resnet101", "deepfont"],
help="Model to use (default: resnet18)",
)
parser.add_argument(
"-p",
"--pretrained",
action="store_true",
help="Use pretrained model for ResNet (default: False)",
)
parser.add_argument(
"-i",
"--crop-roi-bbox",
action="store_true",
help="Crop ROI bounding box (default: False)",
)
parser.add_argument(
"-a",
"--augmentation",
type=str,
default=None,
choices=["v1", "v2", "v3"],
help="Augmentation strategy to use (default: None)",
)
parser.add_argument(
"-l",
"--lr",
type=float,
default=0.0001,
help="Learning rate (default: 0.0001)",
)
parser.add_argument(
"-s",
"--datasets",
nargs="*",
type=str,
default=["./dataset/font_img"],
help="Datasets paths, seperated by space (default: ['./dataset/font_img'])",
)
parser.add_argument(
"-n",
"--model-name",
type=str,
default=None,
help="Model name (default: current tag)",
)
parser.add_argument(
"-f",
"--font-classification-only",
action="store_true",
help="Font classification only (default: False)",
)
parser.add_argument(
"-z",
"--size",
type=int,
default=512,
help="Model feature image input size (default: 512)",
)
parser.add_argument(
"-t",
"--tensor-core",
type=str,
choices=["medium", "high", "heighest"],
default="high",
help="Tensor core precision (default: high)",
)
parser.add_argument(
"-r",
"--preserve-aspect-ratio-by-random-crop",
action="store_true",
help="Preserve aspect ratio (default: False)",
)
args = parser.parse_args()
torch.set_float32_matmul_precision(args.tensor_core)
devices = args.devices
single_batch_size = args.single_batch_size
total_num_workers = os.cpu_count()
single_device_num_workers = total_num_workers // len(devices)
config.INPUT_SIZE = args.size
if os.name == "nt":
single_device_num_workers = 0
lr = args.lr
b1 = 0.9
b2 = 0.999
lambda_font = 2.0
lambda_direction = 0.5
lambda_regression = 1.0
regression_use_tanh = False
num_warmup_epochs = 5
num_epochs = 100
log_every_n_steps = 100
num_device = len(devices)
data_module = FontDataModule(
train_paths=[os.path.join(path, "train") for path in args.datasets],
val_paths=[os.path.join(path, "val") for path in args.datasets],
test_paths=[os.path.join(path, "test") for path in args.datasets],
batch_size=single_batch_size,
num_workers=single_device_num_workers,
pin_memory=True,
train_shuffle=True,
val_shuffle=False,
test_shuffle=False,
regression_use_tanh=regression_use_tanh,
train_transforms=args.augmentation,
crop_roi_bbox=args.crop_roi_bbox,
preserve_aspect_ratio_by_random_crop=args.preserve_aspect_ratio_by_random_crop,
)
num_iters = data_module.get_train_num_iter(num_device) * num_epochs
num_warmup_iter = data_module.get_train_num_iter(num_device) * num_warmup_epochs
model_name = get_current_tag() if args.model_name is None else args.model_name
logger_unconditioned = TensorBoardLogger(
save_dir=os.getcwd(), name="tensorboard", version=model_name
)
strategy = "auto" if num_device == 1 else "ddp"
trainer = ptl.Trainer(
max_epochs=num_epochs,
logger=logger_unconditioned,
devices=devices,
accelerator="gpu",
enable_checkpointing=True,
log_every_n_steps=log_every_n_steps,
strategy=strategy,
deterministic=True,
)
if args.model == "resnet18":
model = ResNet18Regressor(
pretrained=args.pretrained, regression_use_tanh=regression_use_tanh
)
elif args.model == "resnet34":
model = ResNet34Regressor(
pretrained=args.pretrained, regression_use_tanh=regression_use_tanh
)
elif args.model == "resnet50":
model = ResNet50Regressor(
pretrained=args.pretrained, regression_use_tanh=regression_use_tanh
)
elif args.model == "resnet101":
model = ResNet101Regressor(
pretrained=args.pretrained, regression_use_tanh=regression_use_tanh
)
elif args.model == "deepfont":
assert args.pretrained is False
assert args.size == 105
assert args.font_classification_only is True
model = DeepFontBaseline()
else:
raise NotImplementedError()
if torch.__version__ >= "2.0" and os.name == "posix":
model = torch.compile(model)
detector = FontDetector(
model=model,
lambda_font=lambda_font,
lambda_direction=lambda_direction,
lambda_regression=lambda_regression,
font_classification_only=args.font_classification_only,
lr=lr,
betas=(b1, b2),
num_warmup_iters=num_warmup_iter,
num_iters=num_iters,
num_epochs=num_epochs,
)
trainer.fit(detector, datamodule=data_module, ckpt_path=args.checkpoint)
trainer.test(detector, datamodule=data_module)