-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtraining_loop.py
221 lines (175 loc) · 10.6 KB
/
training_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
from torch_ema import ExponentialMovingAverage
from generators import generators
from discriminators import discriminators
from processes import processes
import configs as configs
import datasets
def set_generator(config, device, opt):
generator_args = {}
if 'representation' in config['generator']:
generator_args['representation_kwargs'] = config['generator']['representation']['kwargs']
if 'super_resolution' in config['generator']:
generator_args['super_resolution_kwargs'] = config['generator']['super_resolution']['kwargs']
if 'renderer' in config['generator']:
generator_args['renderer_kwargs'] = config['generator']['renderer']['kwargs']
generator = getattr(generators, config['generator']['class'])(
**generator_args,
**config['generator']['kwargs']
)
if opt.load_dir != '':
generator.load_state_dict(torch.load(os.path.join(opt.load_dir, 'step%06d_generator.pth'%opt.set_step), map_location='cpu'))
generator = generator.to(device)
if opt.load_dir != '':
ema = torch.load(os.path.join(opt.load_dir, 'step%06d_ema.pth'%opt.set_step), map_location=device)
ema2 = torch.load(os.path.join(opt.load_dir, 'step%06d_ema2.pth'%opt.set_step), map_location=device)
parameters_ = [p for p in generator.parameters()]
if len(parameters_) == len(ema.shadow_params):
for i in range(len(parameters_) - 1, -1, -1):
if not parameters_[i].requires_grad:
ema.shadow_params.pop(i)
ema2.shadow_params.pop(i)
else:
ema = ExponentialMovingAverage(generator.parameters(), decay=0.999)
ema2 = ExponentialMovingAverage(generator.parameters(), decay=0.9999)
return generator, ema, ema2
def set_discriminator(config, device, opt):
discriminator = getattr(discriminators, config['discriminator']['class'])(**config['discriminator']['kwargs'])
if opt.load_dir != '':
discriminator.load_state_dict(torch.load(os.path.join(opt.load_dir, 'step%06d_discriminator.pth'%opt.set_step), map_location='cpu'))
discriminator = discriminator.to(device)
return discriminator
def set_optimizer_G(generator_ddp, config, opt):
param_groups = []
if 'sr_lr' in config['optimizer']:
sr_parameters = [p for n, p in generator_ddp.named_parameters() if 'module.super_resolution' in n]
param_groups.append({'params': sr_parameters, 'name': 'sr_parameters', 'lr':config['optimizer']['sr_lr']})
if 'sr_mapping_lr' in config['optimizer']:
sr_mapping_parameters = [p for n, p in generator_ddp.named_parameters() if 'module.super_resolution.mapping_network' in n]
param_groups.append({'params': sr_mapping_parameters, 'name': 'sr_mapping_parameters', 'lr':config['optimizer']['sr_mapping_lr']})
generator_parameters = [p for n, p in generator_ddp.named_parameters() if
('sr_lr' not in config['optimizer'] or 'module.super_resolution' not in n) and
('sr_mapping_lr' not in config['optimizer'] or 'module.super_resolution.mapping_network' not in n)
]
param_groups.append({'params': generator_parameters, 'name': 'generator'})
optimizer_G = torch.optim.Adam(param_groups, lr=config['optimizer']['gen_lr'], betas=config['optimizer']['betas'])
if opt.load_dir != '':
state_dict = torch.load(os.path.join(opt.load_dir, 'step%06d_optimizer_G.pth'%opt.set_step), map_location='cpu')
optimizer_G.load_state_dict(state_dict)
return optimizer_G
def set_optimizer_D(discriminator_ddp, config, opt):
optimizer_D = torch.optim.Adam(discriminator_ddp.parameters(), lr=config['optimizer']['disc_lr'], betas=config['optimizer']['betas'])
if opt.load_dir != '':
optimizer_D.load_state_dict(torch.load(os.path.join(opt.load_dir, 'step%06d_optimizer_D.pth'%opt.set_step), map_location='cpu'))
return optimizer_D
def training_process(rank, world_size, opt, device):
#--------------------------------------------------------------------------------------
# extract training config
config = getattr(configs, opt.config)
#--------------------------------------------------------------------------------------
# set amp gradient scaler
scaler = torch.cuda.amp.GradScaler()
if opt.load_dir != '':
if not config['global'].get('disable_scaler', False):
scaler.load_state_dict(torch.load(os.path.join(opt.load_dir, 'step%06d_scaler.pth'%opt.set_step)))
if config['global'].get('disable_scaler', False):
scaler = torch.cuda.amp.GradScaler(enabled=False)
#--------------------------------------------------------------------------------------
#set generator and discriminator
generator, ema, ema2 = set_generator(config, device, opt)
discriminator = set_discriminator(config, device, opt)
generator_ddp = DDP(generator, device_ids=[rank], find_unused_parameters=False)
discriminator_ddp = DDP(discriminator, device_ids=[rank], find_unused_parameters=False, broadcast_buffers=False)
generator = generator_ddp.module
discriminator = discriminator_ddp.module
if rank == 0:
print('\n' + '='*80)
print('Model Summary')
print('='*80)
for name, param in generator_ddp.named_parameters():
print(f'{name:<{96}}{param.shape}')
total_num = sum(p.numel() for p in generator_ddp.parameters())
trainable_num = sum(p.numel() for p in generator_ddp.parameters() if p.requires_grad)
print('G: Total ', total_num, ' Trainable ', trainable_num)
for name, param in discriminator_ddp.named_parameters():
print(f'{name:<{96}}{param.shape}')
total_num = sum(p.numel() for p in discriminator_ddp.parameters())
trainable_num = sum(p.numel() for p in discriminator_ddp.parameters() if p.requires_grad)
print('D: Total ', total_num, ' Trainable ', trainable_num)
#--------------------------------------------------------------------------------------
# set optimizers
optimizer_G = set_optimizer_G(generator_ddp, config, opt)
optimizer_D = set_optimizer_D(discriminator_ddp, config, opt)
generator_losses = []
discriminator_losses = []
if opt.set_step != None:
generator.step = opt.set_step
discriminator.step = opt.set_step
#--------------------------------------------------------------------------------------
# set loss
process = getattr(processes, config['process']['class'])(**config['process']['kwargs'])
#--------------------------------------------------------------------------------------
# get dataset
dataset = getattr(datasets, config['dataset']['class'])(opt.data_dir, **config['dataset']['kwargs'])
dataloader, CHANNELS = datasets.get_dataset_distributed_(dataset,
world_size,
rank,
config['global']['batch_size'])
#--------------------------------------------------------------------------------------
# main training loop
with open(os.path.join(opt.output_dir, 'options.txt'), 'w') as f:
f.write(str(opt))
f.write('\n\n')
f.write(str(generator))
f.write('\n\n')
f.write(str(discriminator))
f.write('\n\n')
f.write(str(opt.config))
f.write('\n\n')
f.write(str(config))
with tqdm(desc="Steps", total=opt.total_step, initial=generator.step, disable=(rank!=0)) as pbar:
while True:
#--------------------------------------------------------------------------------------
# trainging iterations
for i, (imgs, poses) in enumerate(dataloader):
if scaler.get_scale() < 1:
scaler.update(1.)
real_imgs = imgs.to(device, non_blocking=True)
real_poses = poses.to(device, non_blocking=True)
#--------------------------------------------------------------------------------------
# TRAIN DISCRIMINATOR
d_loss = process.train_D(real_imgs, real_poses, generator_ddp, discriminator_ddp, optimizer_D, scaler, config, device)
discriminator_losses.append(d_loss)
# TRAIN GENERATOR
g_loss = process.train_G(real_imgs, generator_ddp, ema, ema2, discriminator_ddp, optimizer_G, scaler, config, device)
generator_losses.append(g_loss)
pbar.update(1)
discriminator.step += 1
generator.step += 1
#--------------------------------------------------------------------------------------
# print and save
if rank == 0:
if i%10 == 0:
tqdm.write(f"[Experiment: {opt.output_dir}] [GPU: {os.environ['CUDA_VISIBLE_DEVICES']}] [Step: {discriminator.step}] [D loss: {d_loss}] [G loss: {g_loss}] [Scale: {scaler.get_scale()}]")
# save fixed angle generated images
if discriminator.step % opt.sample_interval == 0:
process.snapshot(generator_ddp, discriminator_ddp, config, opt.output_dir, device)
# save_model
if discriminator.step % opt.save_interval == 0:
torch.save(ema, os.path.join(opt.output_dir, 'step%06d_ema.pth'%discriminator.step))
torch.save(ema2, os.path.join(opt.output_dir, 'step%06d_ema2.pth'%discriminator.step))
torch.save(generator_ddp.module.state_dict(), os.path.join(opt.output_dir, 'step%06d_generator.pth'%discriminator.step))
torch.save(discriminator_ddp.module.state_dict(), os.path.join(opt.output_dir, 'step%06d_discriminator.pth'%discriminator.step))
torch.save(optimizer_G.state_dict(), os.path.join(opt.output_dir, 'step%06d_optimizer_G.pth'%discriminator.step))
torch.save(optimizer_D.state_dict(), os.path.join(opt.output_dir, 'step%06d_optimizer_D.pth'%discriminator.step))
torch.save(scaler.state_dict(), os.path.join(opt.output_dir, 'step%06d_scaler.pth'%discriminator.step))
torch.save(generator_losses, os.path.join(opt.output_dir, 'generator.losses'))
torch.save(discriminator_losses, os.path.join(opt.output_dir, 'discriminator.losses'))
#--------------------------------------------------------------------------------------