-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStat.java
498 lines (441 loc) · 15.7 KB
/
Stat.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import java.text.DecimalFormat;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
public class Stat {
public static double Mean(double[] input) {
int sum = 0;
for (double a : input) {
sum += a;
}
return sum / input.length;
}
public static double StandardDeviation(double[] input) {
double Mean = Mean(input);
int sum = 0;
for (double a : input) {
sum += Math.pow((a - Mean), 2);
}
return Math.sqrt(sum / input.length);
}
public static double Variation(double[] input) {
double Mean = Mean(input);
int sum = 0;
for (double a : input) {
sum += Math.pow((a - Mean), 2);
}
return sum / (input.length - 1);
}
public static double SEOfMean(double[] input) {
return StandardDeviation(input) / (Math.sqrt(input.length));
}
public static double CoefficientOfVariation(double[] input) {
return (StandardDeviation(input) / Mean(input)) * 100;
}
public static double FirstQuartile(double[] input) {
double[] temp = input.clone();
Arrays.sort(temp);
int length = temp.length + 1;
double position = length * (.25);
int lowerBound = ((int) position) - 1;
int upperBound = ((int) position);
if (lowerBound == length * (.25)) {
return temp[lowerBound];
}
double difference = (temp[upperBound] - temp[lowerBound]) * (position - (lowerBound + 1));
return temp[lowerBound] + difference;
}
public static double Median(double[] input) {
double[] temp = input.clone();
Arrays.sort(temp);
int length = temp.length + 1;
double position = length * (.5);
int lowerBound = ((int) position) - 1;
int upperBound = ((int) position);
if (lowerBound == length * (.5)) {
return temp[lowerBound];
}
double difference = (temp[upperBound] - temp[lowerBound]) * (position - (lowerBound + 1));
return temp[lowerBound] + difference;
}
public static double ThirdQuartile(double[] input) {
double[] temp = input.clone();
Arrays.sort(temp);
int length = temp.length + 1;
double position = length * (.75);
int lowerBound = ((int) position) - 1;
int upperBound = ((int) position);
if (lowerBound == length * (.75)) {
return temp[lowerBound];
}
double difference = (temp[upperBound] - temp[lowerBound]) * (position - (lowerBound + 1));
return temp[lowerBound] + difference;
}
public static double InterQuartileRange(double[] input) {
return ThirdQuartile(input) - FirstQuartile(input);
}
public static double[] Mode(double[] input) {
HashMap<Double, Double> Frequency = new HashMap<Double, Double>();
for (double a : input) {
if (!Frequency.containsKey(a)) {
Frequency.put(a, 1.0);
} else {
Frequency.replace(a, Frequency.get(a) + 1.0);
}
}
double largestNumber = 0;
int numOfLarge = 0;
for (Map.Entry<Double, Double> entry : Frequency.entrySet()) {
double value = entry.getValue();
if (value > largestNumber) {
largestNumber = value;
numOfLarge = 1;
} else if (value == largestNumber) {
numOfLarge++;
}
}
double[] output = new double[numOfLarge];
int position = 0;
for (Map.Entry<Double, Double> entry : Frequency.entrySet()) {
double key = entry.getKey();
double value = entry.getValue();
if (value == largestNumber) {
output[position] = key;
position++;
}
}
Arrays.sort(output);
return output;
}
public static double Minimum(double[] input) {
double min = input[0];
for (double a : input) {
if (a < min) {
min = a;
}
}
return min;
}
public static double Maximum(double[] input) {
double max = input[0];
for (double a : input) {
if (a > max) {
max = a;
}
}
return max;
}
public static double Range(double[] input) {
return Maximum(input) - Minimum(input);
}
public static double Factorial(int input) {
double output = 1.0;
if (input == 0) {
return 1.0;
}
while (input >= 1) {
output = input * output;
input--;
}
return output;
}
// Cecil Hastings, Jr., Approximations for Digital Computers, Princeton, NJ:
// Princeton University Press 1955, pp. 187
public static double ErrorFunction(double input) {
return 1 - 1 / Math.pow((1 + .0705230784 * input + .0422820123 * Math.pow(input, 2)
+ .0092705272 * Math.pow(input, 3) + .0001520143 * Math.pow(input, 4) + .0002765672 * Math.pow(input, 5)
+ .0000430638 * Math.pow(input, 6)), 16);
}
public static double ZScoreToPercentile(double input, boolean twoTailed, boolean rightTailedOrOuterTailed) {
double error = ErrorFunction(input / Math.sqrt(2));
double percentile = error / 2.0 + .5;
if (twoTailed == false) {
if (rightTailedOrOuterTailed == true) {
return 1.0 - percentile;
} else {
return percentile;
}
} else {
if (rightTailedOrOuterTailed == true) {
if (percentile > .5) {
return (1.0 - percentile) * 2.0;
} else {
return percentile * 2.0;
}
} else {
if (percentile > .5) {
return (percentile - .5) * 2.0;
} else {
return (.5 - percentile) * 2.0;
}
}
}
}
/*
* Approximation of Inverse Error Function by Peter John Acklam Modified code of
* javascript implementation by Alankar Misra
* https://web.archive.org/web/20150915095009/http://home.online.no/~pjacklam/
* notes/invnorm/impl/misra/normsinv.html
*/
public static double ProbitFunction(double p) {
// Coefficients in rational approximations
double[] a = new double[] { -3.969683028665376e+01, 2.209460984245205e+02, -2.759285104469687e+02,
1.383577518672690e+02, -3.066479806614716e+01, 2.506628277459239e+00 };
double[] b = new double[] { -5.447609879822406e+01, 1.615858368580409e+02, -1.556989798598866e+02,
6.680131188771972e+01, -1.328068155288572e+01 };
double[] c = new double[] { -7.784894002430293e-03, -3.223964580411365e-01, -2.400758277161838e+00,
-2.549732539343734e+00, 4.374664141464968e+00, 2.938163982698783e+00 };
double[] d = new double[] { 7.784695709041462e-03, 3.224671290700398e-01, 2.445134137142996e+00,
3.754408661907416e+00 };
// Define break-points.
double plow = 0.02425;
double phigh = 1 - plow;
// Rational approximation for lower region:
if (p < plow) {
double q = Math.sqrt(-2 * Math.log(p));
return (((((c[0] * q + c[1]) * q + c[2]) * q + c[3]) * q + c[4]) * q + c[5])
/ ((((d[0] * q + d[1]) * q + d[2]) * q + d[3]) * q + 1);
}
// Rational approximation for upper region:
if (phigh < p) {
double q = Math.sqrt(-2 * Math.log(1 - p));
return -(((((c[0] * q + c[1]) * q + c[2]) * q + c[3]) * q + c[4]) * q + c[5])
/ ((((d[0] * q + d[1]) * q + d[2]) * q + d[3]) * q + 1);
}
// Rational approximation for central region:
double q = p - 0.5;
double r = q * q;
return (((((a[0] * r + a[1]) * r + a[2]) * r + a[3]) * r + a[4]) * r + a[5]) * q
/ (((((b[0] * r + b[1]) * r + b[2]) * r + b[3]) * r + b[4]) * r + 1);
}
public static double PercentileToZscore(double percentile, boolean twoTailed, boolean rightTailedOrOuterTailed) {
if (twoTailed == false) {
if (rightTailedOrOuterTailed == true) {
return ProbitFunction(1.0 - percentile);
} else {
return ProbitFunction(percentile);
}
} else {
if (rightTailedOrOuterTailed == true) {
return ProbitFunction(1.0 - (percentile / 2.0));
} else {
return ProbitFunction(percentile / 2.0 + .5);
}
}
}
static double GammaFunction(double x) {
double tmp = (x - 0.5) * Math.log(x + 4.5) - (x + 4.5);
double ser = 1.0 + 76.18009173 / (x + 0) - 86.50532033 / (x + 1) + 24.01409822 / (x + 2) - 1.231739516 / (x + 3)
+ 0.00120858003 / (x + 4) - 0.00000536382 / (x + 5);
return Math.exp(tmp + Math.log(ser * Math.sqrt(2 * Math.PI)));
}
static double TDistributionPDF(double tScore, double degreesOfFreedom) {
return (GammaFunction((degreesOfFreedom + 1.0) / 2.0)
/ (Math.sqrt(degreesOfFreedom * Math.PI) * GammaFunction(degreesOfFreedom / 2.0)))
* Math.pow(1.0 + (Math.pow(tScore, 2.0) / degreesOfFreedom), -(degreesOfFreedom + 1.0) / 2.0);
}
static double TScoreToPerecentile(double tScore, double degreesOfFreedom, boolean twoTailed,
boolean rightTailedOrOuterTailed) {
boolean left = false;
if (tScore < 0) {
tScore *= -1.0;
left = true;
}
DecimalFormat df = new DecimalFormat("#.#####");
tScore = Double.parseDouble(df.format(tScore));
double percentile = 0.0;
for (double a = tScore; a > 0; a -= .00001) {
percentile += .00001 * TDistributionPDF(a, degreesOfFreedom);
}
percentile += .5;
if (percentile > 1.0) {
percentile = 1.0;
}
if (left) {
percentile = 1.0 - percentile;
}
if (tScore == 0.0) {
percentile = .5;
}
if (twoTailed == false) {
if (rightTailedOrOuterTailed == true) {
return 1.0 - percentile;
} else {
return percentile;
}
} else {
if (rightTailedOrOuterTailed == true) {
if (percentile > .5) {
return (1.0 - percentile) * 2.0;
} else {
return percentile * 2.0;
}
} else {
if (percentile > .5) {
return (percentile - .5) * 2.0;
} else {
return (.5 - percentile) * 2.0;
}
}
}
}
static double PercentileToTScoreHelper(double percentile, double degreesOfFreedom) {
double perc = percentile;
double ZScore = PercentileToZscore(perc,false,false);
boolean forwards = true;
double xIncrement = 1.0;
if(percentile < .5) {
forwards = false;
xIncrement = -1.0;
}
double xPosition = ZScore;
boolean continueLoops = true;
double currentPerc = TScoreToPerecentile(xPosition, degreesOfFreedom, false, false);
while(continueLoops) {
if(perc-.00001 <= currentPerc && perc+.00001 >= currentPerc ) {
continueLoops = false;
}
else {
if(forwards) {
if(currentPerc > perc) {
forwards = false;
xIncrement *= -0.1;
}
else {
xPosition += xIncrement;
currentPerc = TScoreToPerecentile(xPosition, degreesOfFreedom, false, false);
}
}
else {
if(currentPerc < perc) {
forwards = true;
xIncrement *= -0.1;
}
else {
xPosition += xIncrement;
currentPerc = TScoreToPerecentile(xPosition, degreesOfFreedom, false, false);
}
}
}
}
return xPosition;
}
static double PercentileToTScore(double percentile, double degreesOfFreedom, boolean twoTailed, boolean rightTailedOrOuterTailed) {
if(twoTailed == false) {
if(rightTailedOrOuterTailed == true) {
return PercentileToTScoreHelper(1.0-percentile, degreesOfFreedom);
}
else {
return PercentileToTScoreHelper(percentile, degreesOfFreedom);
}
}
else {
if(rightTailedOrOuterTailed == true) {
return PercentileToTScoreHelper(1.0 - (percentile / 2.0), degreesOfFreedom);
}
else {
return PercentileToTScoreHelper(percentile / 2.0 + .5, degreesOfFreedom);
}
}
}
public static double OneSampleZHypothesis(double mean, double stdev, double hypothesis, boolean twoTailed,
Boolean rightTailed) {
return ZScoreToPercentile((hypothesis - mean) / stdev, twoTailed, rightTailed);
}
public static double TwoSamplePearsonsCorrelationConstant(double[] setX, double[] setY) {
double top = 0;
double SummationOne = 0;
for (int a = 0; a < setX.length; a++) {
SummationOne += setX[a] * setY[a];
}
double SummationTwo = 0;
for (int a = 0; a < setX.length; a++) {
SummationTwo += setX[a];
}
double SummationThree = 0;
for (int a = 0; a < setX.length; a++) {
SummationThree += setY[a];
}
top = setX.length * SummationOne - SummationTwo * SummationThree;
double bottom = 0;
double SummationFour = 0;
for (int a = 0; a < setX.length; a++) {
SummationFour += Math.pow(setX[a], 2);
}
double SummationFive = 0;
for (int a = 0; a < setX.length; a++) {
SummationFive += Math.pow(setY[a], 2);
}
bottom = Math.sqrt((setX.length * SummationFour - Math.pow(SummationTwo, 2))
* (setX.length * SummationFive - Math.pow(SummationThree, 2)));
return top / bottom;
}
public static double TwoSampleRegressionSlope(double[] setX, double[] setY, double r) {
return r * (StandardDeviation(setY) / StandardDeviation(setX));
}
public static double TwoSampleRegressionIntercep(double[] setX, double[] setY, double slope) {
return Mean(setY) - slope * Mean(setX);
}
public static double TwoSampleResidualStandardDeviation(double[] setX, double[] setY, double intercep,
double slope) {
double top = 0;
for (int a = 0; a < setX.length; a++) {
top += Math.pow(setY[a] - intercep + slope * setX[a], 2);
}
return Math.sqrt(top / (setX.length - 2));
}
public static double TwoSampleStandardErrorOfTheSlope(double[] setX, double ResidualStandardDeviation) {
return ResidualStandardDeviation / (Math.sqrt(setX.length - 1) * StandardDeviation(setX));
}
public static double TwoSampleStandardErrorOfTheIntercep(double[] setX, double ResidualStandardDeviation) {
double summation = 0;
double meanX = Mean(setX);
for (int a = 0; a < setX.length; a++) {
summation += Math.pow(setX[a] - meanX, 2);
}
return ResidualStandardDeviation * Math.sqrt(1 / setX.length + Math.pow(meanX, 2) / summation);
}
public static double TwoSampleRegressionPredictedMeanValueStandardError(double x, double[] setX, double ResidualSD,
double SESlope) {
return Math.sqrt(Math.pow(SESlope, 2) * Math.pow(x - Mean(setX), 2) + (Math.pow(ResidualSD, 2) / setX.length));
}
public static double TwoSampleRegressionPredictedIndividualValueStandardError(double x, double[] setX,
double ResidualSD, double SESlope) {
return Math.sqrt(Math.pow(SESlope, 2) * Math.pow(x - Mean(setX), 2) + (Math.pow(ResidualSD, 2) / setX.length)
+ Math.pow(ResidualSD, 2));
}
public static double TwoSampleRegressionPredictY(double x, double intercep, double slope) {
return intercep + slope * x;
}
public static double SEOfTheMean(double StDev, double size) {
return StDev/Math.sqrt(size);
}
public static double SEOfDifferenceOfTwoMeans(double stDevOne, double sizeOne, double stDevTwo, double sizeTwo) {
return Math.sqrt(Math.pow(stDevOne,2)/sizeOne+Math.pow(stDevTwo,2)/sizeTwo);
}
public static double DFOfDifferenceOfTwoMeans(double stDevOne, double sizeOne, double stDevTwo, double sizeTwo) {
return Math.pow(Math.pow(stDevOne, 2)/sizeOne + Math.pow(stDevTwo, 2)/sizeTwo,2)/
((1.0/(sizeOne-1.0))*(Math.pow(stDevOne, 2)/sizeOne)+(1.0/(sizeTwo-1.0))*(Math.pow(stDevTwo, 2)/sizeTwo));
}
public static double pooledStandardDeviationOfTwoMeans(double stDevOne, double sizeOne, double stDevTwo, double sizeTwo) {
return ((sizeOne-1.0)*Math.pow(stDevOne,2) + (sizeTwo-1.0)*Math.pow(stDevTwo,2))/(sizeOne+sizeTwo-2.0);
}
public static double pooledSEOfTwoMeans(double pooledStDev, double sizeOne, double sizeTwo) {
return pooledStDev*Math.sqrt(1.0/sizeOne + 1.0/sizeTwo);
}
public static double DFOfPooledMeans(double sizeOne, double sizeTwo) {
return sizeOne+sizeTwo-2.0;
}
public static double SEOfProportion(double proportion, double size) {
return Math.sqrt((proportion*(1.0-proportion))/size);
}
public static double SEOfDifferenceOfTwoProportions(double proportionOne, double sizeOne, double proportionTwo, double sizeTwo) {
return Math.sqrt((proportionOne*(1.0-proportionOne))/sizeOne + (proportionTwo*(1.0-proportionTwo))/sizeTwo);
}
public static double proportionPooled(double proportionOne, double sizeOne, double proportionTwo, double sizeTwo) {
return (proportionOne+proportionTwo)/(sizeOne+sizeTwo);
}
public static double SEOfPooledProportions(double pooledProportion, double sizeOne, double sizeTwo) {
return Math.sqrt((pooledProportion*(1.0-pooledProportion))/sizeOne + (pooledProportion*(1.0-pooledProportion))/sizeTwo);
}
}