-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
228 lines (195 loc) · 7.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import argparse
import glob
import os
import numpy as np
import pandas as pd
from experiments import (
run_extremes_experiment,
run_multivariate_experiment,
run_multi_dim_multivariate_experiment,
announce_experiment,
run_multivariate_polluted_experiment,
run_different_window_sizes_evaluator,
)
from src.algorithms import AutoEncoder, DAGMM, RecurrentEBM, LSTMAD, LSTMED
from src.datasets import KDDCup, RealPickledDataset
from src.evaluation import Evaluator
RUNS = 1
def main():
outlier_types, mv_anomalies = parse_arguments()
run_experiments(outlier_types, mv_anomalies)
def parse_arguments():
parser = argparse.ArgumentParser(
description="Perform tests on AD Algorithms. "
"If no flags are passed, all tests will be performed"
)
parser.add_argument(
"-o",
"--outlier-types",
help="List of outlier height anomaly tests to perform. "
'Choose from "extreme_1", "shift_1", "variance_1", "trend_1". '
"If no list is passed, all outlier types will be tested.",
nargs="*",
default=None,
)
parser.add_argument(
"-m",
"--mv-anomalies",
help="List of multivariate anomaly tests to perform. "
'Choose from "doubled", "inversed", "shrinked", "delayed", "xor", "delayed_missing". '
"If no list is passed, all multivariate anomaly types will be tested.",
nargs="*",
default=None,
)
args = parser.parse_args()
if args.outlier_types is None and args.mv_anomalies is None:
return None, None
outlier_types = []
if args.outlier_types is not None:
if not args.outlier_types:
outlier_types = None
else:
outlier_types = args.outlier_types
mv_anomalies = []
if args.mv_anomalies is not None:
if not args.mv_anomalies:
mv_anomalies = None
else:
mv_anomalies = args.mv_anomalies
return outlier_types, mv_anomalies
def detectors(seed):
if os.environ.get("CIRCLECI", False):
dets = [
AutoEncoder(num_epochs=1, seed=seed),
DAGMM(num_epochs=1, seed=seed),
DAGMM(num_epochs=1, autoencoder_type=DAGMM.AutoEncoder.LSTM, seed=seed),
LSTMAD(num_epochs=1, seed=seed),
LSTMED(num_epochs=1, seed=seed),
RecurrentEBM(num_epochs=1, seed=seed),
]
else:
standard_epochs = 40
dets = [
AutoEncoder(num_epochs=standard_epochs, seed=seed),
DAGMM(num_epochs=standard_epochs, seed=seed, lr=1e-4),
DAGMM(
num_epochs=standard_epochs,
autoencoder_type=DAGMM.AutoEncoder.LSTM,
seed=seed,
),
LSTMAD(num_epochs=standard_epochs, seed=seed),
LSTMED(num_epochs=standard_epochs, seed=seed),
RecurrentEBM(num_epochs=standard_epochs, seed=seed),
]
return sorted(dets, key=lambda x: x.framework)
def run_experiments(outlier_types=None, mv_anomalies=None):
# Set the seed manually for reproducibility.
seeds = np.random.randint(np.iinfo(np.uint32).max, size=RUNS, dtype=np.uint32)
output_dir = "reports/experiments"
evaluators = []
outlier_height_steps = 1 if os.environ.get("CIRCLECI", False) else 10
if outlier_types is None:
outlier_types = ["extreme_1", "shift_1", "variance_1", "trend_1"]
if mv_anomalies is None:
mv_anomalies = [
"doubled",
"inversed",
"shrinked",
"delayed",
"xor",
"delayed_missing",
]
for outlier_type in outlier_types:
announce_experiment("Outlier Height")
ev_extr = run_extremes_experiment(
detectors,
seeds,
RUNS,
outlier_type,
steps=outlier_height_steps,
output_dir=os.path.join(output_dir, outlier_type, "intensity"),
)
evaluators.append(ev_extr)
if os.environ.get("CIRCLECI", False):
ev_extr.plot_single_heatmap()
return
announce_experiment("Multivariate Datasets")
ev_mv = run_multivariate_experiment(
detectors, seeds, RUNS, output_dir=os.path.join(output_dir, "multivariate")
)
evaluators.append(ev_mv)
for mv_anomaly in mv_anomalies:
announce_experiment(f"Multivariate Polluted {mv_anomaly} Datasets")
ev_mv = run_multivariate_polluted_experiment(
detectors,
seeds,
RUNS,
mv_anomaly,
output_dir=os.path.join(output_dir, "mv_polluted"),
)
evaluators.append(ev_mv)
announce_experiment(f"High-dimensional multivariate {mv_anomaly} outliers")
ev_mv_dim = run_multi_dim_multivariate_experiment(
detectors,
seeds,
RUNS,
mv_anomaly,
steps=20,
output_dir=os.path.join(output_dir, "multi_dim_mv"),
)
evaluators.append(ev_mv_dim)
announce_experiment("Long-Term Experiments")
ev_different_windows = run_different_window_sizes_evaluator(
different_window_detectors, seeds, RUNS
)
evaluators.append(ev_different_windows)
for ev in evaluators:
ev.plot_single_heatmap()
def evaluate_real_datasets():
REAL_DATASET_GROUP_PATH = "data/raw/"
real_dataset_groups = glob.glob(REAL_DATASET_GROUP_PATH + "*")
seeds = np.random.randint(np.iinfo(np.uint32).max, size=RUNS, dtype=np.uint32)
results = pd.DataFrame()
datasets = [KDDCup(seed=1)]
for real_dataset_group in real_dataset_groups:
for data_set_path in glob.glob(real_dataset_group + "/labeled/train/*"):
data_set_name = data_set_path.split("/")[-1].replace(".pkl", "")
dataset = RealPickledDataset(data_set_name, data_set_path)
datasets.append(dataset)
for seed in seeds:
datasets[0] = KDDCup(seed)
evaluator = Evaluator(datasets, detectors, seed=seed)
evaluator.evaluate()
result = evaluator.benchmarks()
evaluator.plot_roc_curves()
evaluator.plot_threshold_comparison()
evaluator.plot_scores()
results = results.append(result, ignore_index=True)
avg_results = results.groupby(["dataset", "algorithm"], as_index=False).mean()
evaluator.set_benchmark_results(avg_results)
evaluator.export_results("run_real_datasets")
evaluator.create_boxplots(runs=RUNS, data=results, detectorwise=False)
evaluator.create_boxplots(runs=RUNS, data=results, detectorwise=True)
def different_window_detectors(seed):
standard_epochs = 40
dets = [LSTMAD(num_epochs=standard_epochs)]
for window_size in [13, 25, 50, 100]:
dets.extend(
[
LSTMED(
name="LSTMED Window: " + str(window_size),
num_epochs=standard_epochs,
seed=seed,
sequence_length=window_size,
),
AutoEncoder(
name="AE Window: " + str(window_size),
num_epochs=standard_epochs,
seed=seed,
sequence_length=window_size,
),
]
)
return dets
if __name__ == "__main__":
main()