Skip to content

Latest commit

 

History

History
112 lines (103 loc) · 17.5 KB

web_questions_sp.md

File metadata and controls

112 lines (103 loc) · 17.5 KB

WebQuestionsSP

WebQuestionsSP[1] is the annotated version of WebQuestions, which contains questions that require a 1 or 2-hop relation path to arrive at the answer entity. More specifically, about 40% of the questions require a 2-hop relation to reach the answer. Freebase is its backgound KB. Originally, it splits into 3,298 questions as train set and 1,639 questions as test set.

This dataset can be downloaded via the link.

Leaderboard

Model / System Year F1 Hits@1 Accuracy Language Reported by
chatGPT 2023 - - 83.70 EN Tan et al.
TIARA 2022 78.9 75.2 - EN Shu et. al.
DECAF (DPR + FiD-3B) 2022 78.8 82.1 - EN Yu et al.
GPT-3.5v3 2023 - - 79.60 EN Tan et al.
DECAF (DPR + FiD-large) 2022 77.1 ± 0.2 80.7 ± 0.2 - EN Yu et al.
UniK-QA 2022 - 79.1 - EN Yu et al.
SQALER+GNN 2022 - 76.1 - EN Costas Mavromatis and George Karypis
EmQL 2020 - 75.5 - EN Yu et al.
GMT-KBQA 2022 76.6 - 73.1 EN Hu et al.
GPT-3.5v2 2023 - - 72.34 EN Tan et al.
Program Transfer 2022 76.5 74.6 - EN Yu et al.
RnG-KBQA (T5-large) 2022 76.2 ± 0.2 80.7 ± 0.2 - EN Yu et al.
RnG-KBQA 2022 75.6 - 71.1 EN Hu et al.
ArcaneQA 2022 75.3 - - EN Yu et al.
QNRKGQA+h 2022 - 75.7 - EN Ma et al.
DECAF (BM25 + FiD-large) 2022 74.9 ± 0.3 79.0 ± 0.4 - EN Yu et al.
MRP-QA-marginal_prob 2022 74.9 - - EN Wang et al.
QNRKGQA 2022 - 74.9 - EN Ma et al.
ReTrack 2022 74.7 - - EN Hu et al.
ReTrack 2021 74.6 74.7 - EN Yu et al.
BART-large 2022 74.6 - - EN Hu et al.
Subgraph Retrieval 2022 74.5 83.2 - EN Shu et. al.
QGG 2022 74.0 - - EN Yu et al.
CBR-KBQA 2021 72.8 - 69.9 EN Yu et al.
GPT-3 2023 - - 67.78 EN Tan et al.
KGQA-RR(Roberta) 2023 - - 64.59 EN Hu et al.
KGQA-RR(Luke) 2023 - - 64.52 EN Hu et al.
KGQA-RR(Kepler) 2023 - - 64.46 EN Hu et al.
KGQA-RR(Bert) 2023 - - 64.11 EN Hu et al.
KGQA-RR(Albert) 2023 - - 63.89 EN Hu et al.
KGQA-RR(XLnet) 2023 - - 63.87 EN Hu et al.
KGQA-RR(DistilBert) 2023 - - 63.59 EN Hu et al.
KGQA-RR(DistilRoberta) 2023 - - 62.57 EN Hu et al.
KGQA-CL(Roberta) 2023 - - 62.32 EN Hu et al.
KGQA-CL(Luke) 2023 - - 62.31 EN Hu et al.
KGQA-CL(Kepler) 2023 - - 62.02 EN Hu et al.
KGQA-CL(Bert) 2023 - - 61.76 EN Hu et al.
KGQA-CL(DistilBert) 2023 - - 61.49 EN Hu et al.
KGQA-CL(Albert) 2023 - - 61.47 EN Hu et al.
KGQA-CL(XLnet) 2023 - - 61.46 EN Hu et al.
KGQA-CL(DistilRoberta) 2023 - - 61.05 EN Hu et al.
KGQA-CL(GPT2) 2023 - - 60.49 EN Hu et al.
NSM 2021 - 74.30 - EN He et al.
Rigel 2022 - 73.3 - EN Costas Mavromatis and George Karypis
SGM 2022 72.36 - - EN Ma L et al.
CBR-SUBG 2022 72.1 - - EN Yu et al.
NPI 2022 - 72.6 - EN Cao et al.
TextRay 2022 - 72.2 - EN Cao et al.
CBR-SUBG 2022 - 72.10 - EN Das et al.
KGQA Based on Query Path Generation 2022 - 71.7 - EN Yang et al.
STAGG_SP 2022 71.7 - - EN Wang et al.
SSKGQA 2022 - 71.4 - EN Mingchen Li and Jonathan Shihao Ji
TransferNet 2022 - 71.4 - EN Shi et al.
SeqM 2020 71.83 - - EN Ma L et al.
ReTraCK 2021 71.0 71.6 - EN Shu et. al.
REAREV 2022 70.9 76.4 - EN Costas Mavromatis and George Karypis
HGNet 2021 70.3 70.6 - EN Yu et al.
GrailQA Ranking 2021 70.0 - - EN Shu et. al.
SQALER 2022 - 70.6 - EN Costas Mavromatis and George Karypis
STAGG 2015 69.00 - - EN Ma L et al.
UHop 2019 68.5 - - EN Ma L et al.
KBIGER 2022 68.4 75.3 - EN Du et al.
NSM 2022 - 69.0 - EN Cao et al.
GraftNet-EF+LF 2018 - 68.7 - EN Sun et al.
PullNet 2019 - 68.1 - EN Sun et al.
KBQA-GST 2022 67.9 - - EN Wang et al.
Topic Units 2019 67.9 - - EN Ma L et al.
NSM 2022 67.4 74.3 - EN Du et al.
Relation Learning 2021 64.5 72.9 - EN Shu et. al.
SR+NSM 2022 64.1 69.5 - EN Yu et al.
NSM 2022 62.8 68.7 - EN Costas Mavromatis and George Karypis
ARN_ConvE 2023 - 68.0 - EN Cui et al.
GraftNet 2022 62.8 67.8 - EN Du et al.
PullNet 2019 62.8 67.8 - EN Yu et al.
DCRN 2021 - 67.8 - EN Cai et al.
ARN_TuckER 2023 - 67.5 - EN Cui et al.
NRQA 2022 - 67.1 - EN Guo et al.
GraftNet 2022 - 66.4 - EN Mingchen Li and Jonathan Shihao Ji
EmbedKGQA 2020 - 66.6 - EN Saxena et al.
GraftNet 2022 62.4 66.7 - EN Costas Mavromatis and George Karypis
HR-BiLSTM 2022 62.3 - - EN Wang et al.
GraftNet-EF+LF 2018 62.30 - - EN Sun et al.
TextRay 2019 60.3 - - EN Bhutani et al.
SGReader 2022 57.3 67.2 - EN Costas Mavromatis and George Karypis
ARN_ComplEx 2023 - 65.3 - EN Cui et al.
ARN_DistMult 2023 - 61.7 - EN Cui et al.
FLAN-T5 2023 - - 59.87 EN Tan et al.
KGT5 2022 56.1 - - EN Yu et al.
FILM 2022 54.7 - - EN Yu et al.
ReifKB 2020 - 52.7 - EN Cohen et al.
KV-Mem 2022 38.6 46.7 - EN Du et al.
KGQA-RR(GPT2) 2023 - - 18.11 EN Hu et al.

References

[1] Yih, Wen-tau, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value of semantic parse labeling for knowledge base question answering. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 201-206. 2016.

Go back to the README