-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path1129.cpp
122 lines (108 loc) · 3.93 KB
/
1129.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
class Solution {
public:
vector<int> shortestAlternatingPaths(int n, vector<vector<int>>& redEdges, vector<vector<int>>& blueEdges) {
vector<int> res(n, INT_MAX);
vector<vector<int>> redAdjacency(n);
vector<vector<int>> blueAdjacency(n);
for (auto& edge : redEdges) {
redAdjacency[edge[0]].push_back(edge[1]);
}
for (auto& edge : blueEdges) {
blueAdjacency[edge[0]].push_back(edge[1]);
}
vector<vector<bool>> visited(n, vector<bool>(2, false));
// node, color (0: prev=red; 1: prev=blue)
queue<pair<int, int>> q;
q.push(make_pair(0, 0));
q.push(make_pair(0, 1));
visited[0][0] = true;
visited[0][1] = true;
int distance = 0;
while (!q.empty()) {
int n = q.size();
for (int i = 0; i < n; ++i) {
auto [node, color] = q.front();
q.pop();
res[node] = min(res[node], distance);
// prev blue
if (color == 1) {
for (auto& neighbor : redAdjacency[node]) {
if (visited[neighbor][1]) continue;
q.push(make_pair(neighbor, 0));
visited[neighbor][1] = true;
}
}
else {
for (auto& neighbor : blueAdjacency[node]) {
if (visited[neighbor][0]) continue;
q.push(make_pair(neighbor, 1));
visited[neighbor][0] = true;
}
}
}
distance++;
}
for (int i = 0; i < n; ++i) {
if (res[i] == INT_MAX) res[i] = -1;
}
return res;
}
};
// v2
class Solution {
public:
void bfs(vector<vector<int>>& adjacencyRed, vector<vector<int>>& adjacencyBlue, bool prevRed, vector<int>& res, int n) {
vector<bool> visitedFromRed(n, false);
vector<bool> visitedFromBlue(n, false);
int level = 1;
queue<int> q;
q.push(0);
while (!q.empty()) {
int m = q.size();
for (int i = 0; i < m; ++i) {
int node = q.front();
q.pop();
if (prevRed) {
for (auto& neighbor : adjacencyBlue[node]) {
if (visitedFromBlue[neighbor]) continue;
visitedFromBlue[neighbor] = true;
res[neighbor] = min(res[neighbor], level);
q.push(neighbor);
}
}
else {
for (auto& neighbor : adjacencyRed[node]) {
if (visitedFromRed[neighbor]) continue;
visitedFromRed[neighbor] = true;
res[neighbor] = min(res[neighbor], level);
q.push(neighbor);
}
}
}
prevRed = prevRed ^ 1;
level++;
}
}
vector<int> shortestAlternatingPaths(int n, vector<vector<int>>& redEdges, vector<vector<int>>& blueEdges) {
vector<vector<int>> adjacencyRed(n);
vector<vector<int>> adjacencyBlue(n);
for (auto& edge : redEdges) {
adjacencyRed[edge[0]].push_back(edge[1]);
}
for (auto& edge : blueEdges) {
adjacencyBlue[edge[0]].push_back(edge[1]);
}
vector<int> res(n, INT_MAX);
res[0] = 0;
// from red
bool prevRed = false;
bfs(adjacencyRed, adjacencyBlue, prevRed, res, n);
// from blue
prevRed = true;
bfs(adjacencyRed, adjacencyBlue, prevRed, res, n);
for (int i = 0; i < n; ++i) {
if (res[i] == INT_MAX) res[i] = -1;
}
return res;
}
};