-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdetector.py
181 lines (152 loc) · 5.78 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import copy
import cv2
import numpy as np
class Detector(object):
def __init__(
self,
model_path='model.onnx',
input_shape=(192, 192),
score_th=0.3,
nms_th=0.5,
providers=['CUDAExecutionProvider', 'CPUExecutionProvider'],
num_threads=None, # Valid only when using Tensorflow-Lite
):
# 入力サイズ
self.input_shape = input_shape
# 閾値
self.score_th = score_th
self.nms_th = nms_th
# モデル読み込み
self.extension = os.path.splitext(model_path)[1][1:]
if self.extension == 'onnx':
import onnxruntime
self.model = onnxruntime.InferenceSession(
model_path,
providers=providers,
)
self.input_name = self.model.get_inputs()[0].name
self.output_name = self.model.get_outputs()[0].name
elif self.extension == 'tflite':
try:
from tflite_runtime.interpreter import Interpreter
self.model = Interpreter(
model_path=model_path,
num_threads=num_threads,
)
except ImportError:
import tensorflow as tf
self.model = tf.lite.Interpreter(
model_path=model_path,
num_threads=num_threads,
)
self.model.allocate_tensors()
self.input_name = self.model.get_input_details()[0]['index']
self.output_name = self.model.get_output_details()[0]['index']
else:
raise ValueError("Invalid extension %s." % (model_path))
def inference(self, image):
temp_image = copy.deepcopy(image)
# 前処理
image, ratio = self._preprocess(temp_image, self.input_shape)
# 推論実施
results = None
if self.extension == 'onnx':
results = self.model.run(
None,
{self.input_name: image[None, :, :, :]},
)[0]
elif self.extension == 'tflite':
image = image.reshape(
-1,
3,
self.input_shape[0],
self.input_shape[1],
)
self.model.set_tensor(self.input_name, image)
self.model.invoke()
results = self.model.get_tensor(self.output_name)
# 後処理
bboxes, scores, class_ids = self._postprocess(
results,
self.input_shape,
ratio,
self.score_th,
self.nms_th,
)
return bboxes, scores, class_ids
def _preprocess(self, image, input_size):
# リサイズ
ratio = min(input_size[0] / image.shape[0],
input_size[1] / image.shape[1])
resized_image = cv2.resize(
image,
(int(image.shape[1] * ratio), int(image.shape[0] * ratio)),
interpolation=cv2.INTER_LINEAR,
)
resized_image = resized_image.astype(np.uint8)
# パディング込み画像作成
padded_image = np.ones(
(input_size[0], input_size[1], 3),
dtype=np.uint8,
)
padded_image *= 114
padded_image[:int(image.shape[0] * ratio), :int(image.shape[1] *
ratio)] = resized_image
padded_image = padded_image.transpose((2, 0, 1))
padded_image = np.ascontiguousarray(padded_image, dtype=np.float32)
return padded_image, ratio
def _postprocess(
self,
outputs,
img_size,
ratio,
score_th,
nms_th,
):
grids = []
expanded_strides = []
strides = [8, 16, 32]
hsizes = [img_size[0] // stride for stride in strides]
wsizes = [img_size[1] // stride for stride in strides]
for hsize, wsize, stride in zip(hsizes, wsizes, strides):
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
grids.append(grid)
shape = grid.shape[:2]
expanded_strides.append(np.full((*shape, 1), stride))
grids = np.concatenate(grids, 1)
expanded_strides = np.concatenate(expanded_strides, 1)
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
predictions = outputs[0]
bboxes = predictions[:, :4]
scores = predictions[:, 4:5] * predictions[:, 5:]
scores = scores.T[0]
bboxes_xyxy = np.ones_like(bboxes)
bboxes_xyxy[:, 0] = bboxes[:, 0] - bboxes[:, 2] / 2.
bboxes_xyxy[:, 1] = bboxes[:, 1] - bboxes[:, 3] / 2.
bboxes_xyxy[:, 2] = bboxes[:, 0] + bboxes[:, 2] / 2.
bboxes_xyxy[:, 3] = bboxes[:, 1] + bboxes[:, 3] / 2.
bboxes_xyxy /= ratio
return self._nms(bboxes_xyxy, scores, score_th, nms_th)
def _nms(self, bboxes, scores, score_th, nms_th):
indexes = cv2.dnn.NMSBoxes(
bboxes.tolist(),
scores.tolist(),
score_th,
nms_th,
)
result_bboxes, result_scores, result_class_ids = [], [], []
if len(indexes) > 0:
if indexes.ndim == 2:
result_bboxes = bboxes[indexes[:, 0]]
result_scores = scores[indexes[:, 0]]
result_class_ids = np.zeros(result_scores.shape)
elif indexes.ndim == 1:
result_bboxes = bboxes[indexes[:]]
result_scores = scores[indexes[:]]
result_class_ids = np.zeros(result_scores.shape)
return result_bboxes, result_scores, result_class_ids